Modicon
 A120 Series I/O Modules User Guide
 04/2007

Table of Contents

Safety Information 15
About the Book 17
Chapter 1 Panel Software Options with A120 I/O Modules 19
Panel Software Option with A120 I/O Modules 19
Chapter 2 Overview of the ADU 204/254 Analog Input Module 23
At a Glance 23
What is the ADU 204/254 Analog Input Module? 24
ADU 204/254 Analog Input Module Conversion Ranges 25
ADU 204/254 Analog Input Module Field Wiring and LED Displays 30
ADU 204/254 Analog Input Module Noise Suppression DIP Switch 31
ADU 204/254 Analog Input Module Calibration 32
ADU 204/254 Analog Input Module Specifications 35
Chapter 3 Overview of the ADU 205 Analog Input Module. 37
At a Glance 37
What is the ADU 205 Analog Input Module? 38
ADU 205 Analog Input Module Conversion Ranges 39
ADU 205 Analog Input Module Switch Settings 42
ADU 205 Analog Input Module Field Wiring 43
ADU 205 Analog Input Module Calibration 45
ADU 205 Analog Input Module Specifications. 47
Chapter 4 Overview of the ADU 206/256 Analog Input Module 49
At a Glance 49
What is the ADU 206/256 Analog Input Module? 50
ADU 206/256 Analog Input Module Conversion Ranges 51
ADU 206/256 Analog Input Module Physical Characteristics 55
ADU 206/256 Analog Input Module Configuration 58
ADU 206/256 Analog Input Module Programming Modes 60
ADU 206/256 Analog Input Module Calibration. 68
ADU 206/256 Analog Input Module Specifications 71
Chapter 5 Overview of the ADU 210 Isolated Analog Input Module 75
At a Glance 75
What is the ADU 210 Isolated Analog Input Module? 76
ADU 210 Isolated Analog Input Module Physical Characteristics 77
Installing the ADU 210 Isolated Analog Input Module 79
ADU 210 Isolated Analog Input Module Operation 81
ADU 210 Isolated Analog Input Module Specifications 85
Chapter 6 Overview of the ADU 211/212 Universal Analog Input Module 87
At a Glance 87
What is the ADU 211/212 Universal Analog Input Module? 88
ADU 211/212 Universal Analog Input Module "J" Thermocouple Quick Start 89
ADU 211/212 Universal Analog Input Module Inputs 90
ADU 211/212 Universal Analog Input Module Installation 90
ADU 211/212 Universal Analog Input Module Switch Settings 91
ADU 211/212 Universal Analog Input Module Field Wiring 95
ADU 211/212 Universal Analog Input Module Field Wiring Examples. 98
ADU 211/212 Universal Analog Input Module Application Notes 105
ADU 211/212 Universal Analog Input Module Configuration 109
ADU 211/212 Universal Analog Input Module Output Registers 110
ADU 211/212 Universal Analog Input Module Input Registers 118
Sequentially Reading ADU 211/212 Universal Analog Input Module Channel Data 121
ADU 211/212 Universal Analog Input Module Troubleshooting 128
ADU 211/212 Universal Analog Input Module Specifications 131
Chapter 7 ADU 214 Analog Input Module 135
At a Glance 135
Overview of the ADU 214 Analog Input Module 136
Conversion Values 139
Configuration - Concept 149
Installation 158
ADU 214 Input Module Specifications 163
Chapter 8 ADU 216 Analog Input Module 169
At a Glance 169
What Is the ADU 216 Analog Input Module? 170
ADU 216 Analog Input Module Conversion Ranges 171
ADU 216 Analog Input Module Physical Characteristics 172
ADU 216 Analog Input Module Configuration 176
ADU 216 Analog Input Module Programming Modes 178
ADU 216 Analog Input Module Calibration 183
ADU 216 Analog Input Module Specifications 185
Chapter 9 Overview of the ADU 257 Analog Input Module 187
At a Glance 187
What is the ADU 257 Analog Input Module? 188
ADU 257 Analog Input Module Physical Characteristics. 189
Installing the ADU 257 Analog Input Module 191
ADU 257 Isolated Analog Input Module Operation 194
ADU 257 Analog Input Module Specifications. 202
Chapter 10 AS-BDEA 203 Profibus-DP Coupler Module Description 205
At a Glance 205
Configuration 206
Features and Functions 210
Diagnosis. 213
Technical Specifications 214
Chapter 11 BKF 201 (16W) \& (64W) InterBus S Master Module 217
At a Glance 217
What Is the BKF 201 (16W) \& (64W) InterBus S Master Module? 218
Physical Characteristics of the BKF 201 (16W) \& (64W) InterBus S Master Module. 219
Switch Settings for the BKF 201 222
Installation of the BKF 201 (16W) \& (64W) Interbus Master Module 223
Operation of the BKF 201 Master Module: I/O Map 226
Example of Hardware and I/O Mapping for the BKF 201 233
Specifications 234
Chapter 12 BKF 202 InterBus S Slave Module 235
At a Glance 235
What Is the BKF 202 InterBus S Slave Module? 236
Physical Characteristics of the BKF 202 InterBus S Slave Module 237
Switch Settings for the BKF 202 InterBus S Slave Module 240
Installation of the BKF 202 InterBus S Slave Module 241
Operation of the BKF 202 InterBus S Slave Module 244
Specifications of the BKF 202 InterBus S Slave Module. 247
Chapter 13 DAO 216 Discrete Output Module 249
At a Glance 249
What is the DAO 216 Discrete Output Module? 250
DAO 216 Discrete Output Module Physical Characteristics 251
Protecting the DAO 216 Discrete Output Module from Inductive Back EMF 255
DAO 216 Discrete Output Module Specifications 256
Chapter 14 Overview of the DAP 204 Relay Output Module 257
At a Glance 257
What is the DAP 204 Relay Output Module? 258
DAP 204 Relay Output Module LEDs 259
DAP 204 Relay Output Module Field Wiring 260
Protecting the DAP 204 Relay Output Module from Inductive Back EMF 261
DAP 204 Relay Output Module Specifications 263
Chapter 15 Overview of the DAP 208/258 Relay Output Module 267
At a Glance 267
What is the DAP 208/258 Relay Output Module? 268
DAP 208/258 Relay Output Module LEDs 268
DAP 208/258 Relay Output Module Field Wiring 269
Protecting the DAP 208/258 Relay Output Module from Inductive Back EMF 270
DAP 208/258 Relay Output Module Specifications 272
Chapter 16 Overview of the DAP 209 Output Module 277
At a Glance 277
What is the DAP 209 Output Module? 278
DAP 209 Output Module LEDs 278
DAP 209 Output Module Field Wiring 279
DAP 209 Output Module Specifications 280
Chapter 17 Overview of the DAP 210 Output Module 283
At a Glance 283
DAP 210 Output Module LEDs 284
DAP 210 Output Module Field Wiring 285
DAP 210 Output Module Specifications 286
What is the DAP 210 Output Module? 288
Chapter 18 Overview of the DAP 211 Combined I/O Module 289
At a Glance 289
What is the DAP 211 Combined I/O Module? 290
DAP 211 Combined I/O Module Logical Input Routine 291
DAP 211 Combined I/O Module Error Checking Procedure for Output States 292
DAP 211 Combined I/O Module Setup Options 292
DAP 211 Combination I/O Module LEDs 293
DAP 211 Combined I/O Module Field Wiring 294
DAP 211 Combined I/O Module Specifications 295
Chapter 19 Overview of the DAP 212/252 Combined I/O Module 297
At a Glance 297
What is the DAP 212/252 Combined I/O Module? 298
DAP 212/252 Combined I/O Module LEDs 298
DAP 212/252 Combined I/O Module Field Connections 299
Protecting the DAP 212/252 Combined I/O Module from Inductive Back EMF 301
DAP 212/252 Combined I/O Module Specifications 303
Chapter 20 Overview of the DAP 216/216N Discrete Output Module 307
At a Glance 307
What is the DAP 216/216N Discrete Output Module? 308
DAP 216/216N Discrete Output Module LEDs 308
DAP 216/216N Field Wiring 309
Resetting the DAP 216 Module After an Overload of Short Circuit. 310
Protecting the DAP 216/216N Discrete Output Module from Inductive Back EMF 312
DAP 216N Discrete Output Module Differences 313
DAP 216/216N Discrete Output Module Specifications 315
Chapter 21 Overview of the DAP 217 Discrete Output Module 317
At a Glance 317
What is the DAP 217 Discrete Output Module? 318
DAP 217 Discrete Output Module LEDs 318
DAP 217 Discrete Output Module Field Wiring 319
Protecting the DAP 217 Discrete Output Module from Inductive Back EMF 321
DAP 217 Discrete Output Module Specifications 322
Chapter 22 Overview of the DAP 218 Output Module 325
At a Glance 325
What is the DAP 218 Output Module? 326
DAP 218 Output Module LEDs 327
DAP 218 Output Module Field Wiring 329
DAP 218 Output Module Specifications 330
Chapter 23 Overview of the DAP 220/250 Combined I/O Module 333
At a Glance 333
What is the DAP 220/250 Combined I/O Module 334
DAP 220/250 Combined I/O Module LEDs 335
DAP 220/250 Combined I/O Module Field Wiring 336
DAP 220/250 Combined I/O Module Recovery After Error 338
DAP 220/250 Combined I/O Module Specifications 340
Chapter 24 Overview of the DAP 253 Combined I/O Module 343
At a Glance 343
What is the DAP 253 Combined I/O Module? 344
DAP 253 Combined I/O Module LEDs 345
DAP 253 Combined I/O Module Field Wiring 347
Protecting the DAP 253 Combined I/O Module from Inductive Back EMF 349
DAP 253 Combined I/O Module Specifications 351
Chapter 25 Overview of the DAP 292 Combined I/O Module 355
At a Glance 355
What is the DAP 292 Combined I/O Module? 356
DAP 292 Combined I/O Module LEDs 357
DAP 292 Combined I/O Module Field Wiring 359
Protecting the DAP 292 Combined I/O Module from Inductive Back EMF 361
DAP 292 Combined I/O Module Specifications 363
Chapter 26 DAU 202/252 Analog Output Module 367
At a Glance 367
What Is the DAU 202/252 Analog Output Module? 368
DAU 202/252 Analog Output Module Field Wiring 370
DAU 202/252 Analog Output Module Calibration 371
DAU 202/252 Analog Output Module Specifications 373
Chapter 27 DAU 204 Analog Output Module 375
At a Glance 375
What Is the DAU 204 Analog Output Module? 377
DAU 204 Analog Output Module Conversion Ranges 378
DAU 204 Analog Output Module Special Features 379
DAU 204 Analog Output Module Installation 381
DAU 204 Analog Output Module Switch Settings 382
DAU 204 Analog Output Module Field Wiring 385
DAU 204 Analog Output Module Configuration 390
DAU 204 Analog Output Module Custom Calibration 395
DAU 204 Analog Output Module Indicators 399
DAU 204 Analog Output Module Specifications 403
Chapter 28 Overview of DAU 208 Analog Output Module 405
At a Glance 405
What is the DAU 208 Analog Output Module? 406
DAU 208 Analog Output Module Conversion Ranges 407
DAU 208 Analog Output Module Physical Characteristics 408
DAU 208 Analog Output Module Configuration 411
DAU 208 Analog Output Module Field Wiring 412
DAU 208 Analog Output Module Calibration 413
DAU 208 Analog Output Module Specifications 416
Chapter 29 DEA 202 InterBus S Interface Module. 419
At a Glance 419
DEA 202 Features and Functions 420
Configuration of the DEA 202 423
DEA 202 LEDs 427
DEA 202 Specifications 428
Chapter 30 Overview of the DEO 216 Input Module 431
At a Glance 431
What is the DEO 216 Input Module? 432
Specifications of the DEO 216 Input Module. 433
Chapter 31 Overview of the DEP 208 Input Module 435
At a Glance 435
What is the DEP 208 Input Module? 436
DEP 208 Input Module LEDs 436
DEP 208 Input Module Field Wiring 437
Using the DEP 208 Input Module wilth Proximity Switches 438
DEP 208 Input Module Specifications 439
Chapter 32 Overview of the DEP 209 Input Module 441
At a Glance 441
What is the DEP 209 Input Module? 442
DEP 209 Input Module LEDs 442
DEP 209 Input Module Field Wiring 443
Using the DEP 209 Input Module with Proximity Switches 444
DEP 209 Input Module Specifications 445
Chapter 33 Overview of the DEP 210 Input Module 447
At a Glance 447
What is the DEP 210 Input Module? 448
DEP 210 Input Module LEDs 449
DEP 210 Input Module Field Wiring 450
DEP 210 Input Module Specifications 453
Chapter 34 Overview of the DEP 211 Input Module 455
At a Glance 455
What is the DEP 211 Input Module? 456
DEP 211 Input Module LEDs 457
DEP 211 Input Module Field Wiring 458
DEP 211 Input Module Specifications 461
Chapter 35 Overview of the DEP 214/254 Input Module 463
At a Glance 463
What is the DEP 214/254 Input Module? 464
DEP 214/254 Input Module LEDs 465
DEP 214/254 Input Module Field Wiring 466
DEP 214/254 Input Module Specifications 468
Chapter 36 Overview of the DEP 215 Input Module 471
At a Glance 471
What is the DEP 215 Input Module? 472
DEP 215 Input Module LEDs 472
DEP 215 Input Module Field Wiring 473
Unique True Low Characteristics of the DEP 215 Input Module 475
DEP 215 Input Module Specifications 477
Chapter 37 Overview of the DEP 216/256 Input Module 479
At a Glance 479
What is the DEP 216/256 Input Module? 480
DEP 216/256 Input Module LEDs 480
DEP 216/256 Input Module Field Wiring 481
DEP 216/256 Input Module Specifications 482
Chapter 38 Overview of the DEP 217 Input Module 483
At a Glance 483
What is the DEP 217 Input Module? 484
DEP 217 Input Module LEDs 484
DEP 217 Input Module Field Wiring 485
DEP 217 Input Module Specifications 486
Chapter 39 Overview of the DEP 218 Input Module 487
At a Glance 487
What is the DEP 218 Input Module? 488
DEP 218 Input Module LEDs 489
DEP 218 Input Module Field Wiring 491
DEP 218 Input Module Specifications 493
Chapter 40 Overview of the DEP 220 Input Module 495
At a Glance 495
What is the DEP 220 Input Module? 496
DEP 220 Input Module LEDs 496
DEP 220 Input Module Field Wiring 497
DEP 220 Input Module Specifications 499
Chapter 41 Overview of the DEP 257 Input Module 501
At a Glance 501
What is the DEP 257 Input Module? 502
DEP 257 Input Module LEDs 503
DEP 257 Input Module Field Wiring 505
DEP 257 Input Module Specifications 507
Chapter 42 Overview of the DEP 296 Input Module 509
At a Glance 509
What is the DEP 296 Input Module? 510
DEP 296 Input Module LEDs 511
DEP 296 Input Module Field Wiring 513
DEP 296 Input Module Specifications 516
Chapter 43 Overview of the DEP 297 Input Module 517
At a Glance 517
What is the DEP 297 Input Module? 518
DEP 297 Input Module LEDs 519
DEP 297 Input Module Field Wiring 521
DEP297 Input Module Specifications 524
Chapter 44 Overview of the FRQ 204/254 Frequency Module 525
At a Glance 525
What is the FRQ 204/254 Frequency Module? 526
Physical Characteristics of the FRQ 204/254 Frequency Module 527
Operating Modes of the FRQ 204/254 Frequency Module 528
Configuration of the FRQ 204/254 Frequency Module 529
Operation and LED Displays of the FRQ 204/254 Frequency Module 533
Specifications of the FRQ 204/254 Frequency Module 534
Chapter 45 Overview of MOT 20X Motion Modules 539
At a Glance 539
What are the MOT 20X Modules? 541
Overview of the MOT 201 Motion Module 542
Overview of the MOT 202 Motion Module 558
MOT 20X Module System Information 580
MOT 20X Motion Module Specifications 584
Chapter 46 Overview of the VIC/VRC/CTR 2XX Counter Input Module 591
At a Glance 591
What is the VIC/VRC/CTR 2XX Counter Input Module? 592
VIC/CRC/CTR 2XX Counter Input Module LEDs 593
Installation of the VRC/CTR 2XX Module 596
VIC/CRC/CTR 2XX Counter Input Module Field Wiring 596
VIC/CRC/CTR 2XX Counter Input Module Configuration for 16-bit Compact Controllers 597
Troubleshooting 607
VIC/CRC/CTR 2XX Counter Input Module Specifications 610
VIC/CRC/CTR 2XX Counter Input Module for Compact 32-bit Controllers 613
Chapter 47 Overview of the ZAE 201 Counter/Positioner Module 617
At a Glance 617
47.1 Overview of the ZAE 201 Counter/Positioner Module 619
At a Glance 619
What is the ZAE 201 Counter/Positioner Module? 620
LED Indicator Displays of the ZAE 201 Counter/Positioner Module 621
Choosing Operating Mode and Input Voltage Level for the ZAE 201 Counter/Positioner Module 622
Operating States of the ZAE 201 Counter/Positioner Module 623
Representing the ZAE 201 Data Blocks in the I/O Map 624
47.2 Using the ZAE 201 Counter/Positioner Module as a High-Speed Counter 627
At a Glance 627
Field Wiring the ZAE 201 for Counting Applications 628
Switch Settings for Using the ZAE 201 as a High-Speed Counter 631
Overview of ZAE 201 Counter Mode Commands and States 632
ZAE 201Counter Mode Commands 633
Example: Using the ZAE 201 as a High-Speed Counter 636
47.3 Using the ZAE 201 Counter/Positioner Module as a Positioning Controller 640
At a Glance 640
Field Wiring for ZAE 201 Positioning Applications 641
Switch Settings for Using the ZAE 201 as a Positioning Controller 646
Overview of ZAE 201 Positioning Mode Commands and States 647
The ZAE 201 Positioning Mode Commands 648
Example: Using the ZAE 201 Module as a Positioner 654
47.4 Specifications of the ZAE 201 Counter/Positioner Module 661
Specifications of the ZAE 201 Counter/Positioner Module 661
Chapter 48 Overview of the ZAE 204 High-Speed Counter Module 665
At a Glance 665
What is the ZAE 204 High-Speed Counter Module? 666
Operating and Display Elements of the ZAE 204 High-Speed Counter Module 668
Configuration of the ZAE 204 High-Speed Counter Module 669
Example Field Connections and Signal Addresses for the ZAE 204 Module 672
Output Register Formats of the ZAE 204 Module 676
Input Register Formats of the ZAE 204 Module 681
Operation of the ZAE 204 Module 684
Specifications of the ZAE 204 High-Speed Counting Module 686
Appendices 689
At a Glance 689
Appendix A IEC Wiring Diagrams for A120 I/O Modules 691
At a Glance 691
IEC Nomenclature Legend 692
IEC Wiring Diagrams for A120 Modules 693
Appendix B I/O Configuration with Concept. 739
At a Glance 739
Multiplexing I/O Data with Concept 740
Configuring A120 Discrete Input Modules with Concept 741
Configuring Discrete Output Modules with Concept 744
Configuring Discrete Combination Modules with Concept 748
Configuring Analog Input Modules with Concept 755
Analog Output Modules 793
Intelligent Modules 803
Communication Interfaces 813
Concept I/O Map Status Words. 816
Appendix C I/O Configuration of A120 Series I/O Modules with Modsoft 821
At a Glance 821
Configuring A120 Discrete Input Modules with Modsoft 822
Configuring A120 Discrete Output Modules with Modsoft 823
Configuring A120 Discrete Combination Modules with Modsoft 824
Configuring A120 Analog Input Modules with Modsoft 825
Configuring A120 Analog Output Modules with Modsoft 826
Configuring A120 Intelligent Modules with Modsoft 827
Configuring A120 Communication Interfaces with Modsoft. 828
Appendix D Modsoft Application Examples for Selected A120 Series I/O Modules 829
At a Glance 829
ADU 205 Application Example 830
DAU 204 Application Example 833
VRC/CTR 2xx (VIC2xx) Application Notes 837
Appendix E A120 Option Modules 845
At a Glance 845
SIM 203 Analog Simulator Module 846
SIM 216 Binary Simulator Module 850
NUL 200 and 202 Modules 854
Appendix F Requirements for CE Compliance 857
At a Glance 857
CE Compliance Requirements for Compact 984 Group 1 858
CE Compliance Requirements for Compact 984 Group 2 862
Appendix G Technical Assistance 867
At a Glance 867
Schneider Automation Customer Service Numbers 868
Installing the Loadables for A120 Series I/O Modules 869
Index 871

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

\triangle DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, can result in death, serious injury, or equipment damage.

\triangle CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result in injury or equipment damage.

PLEASE NOTE Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
 © 2007 Schneider Electric. All Rights Reserved.

About the Book

At a Glance

Document Scope This manual describes the functionality of the Modicon A120 Series I/O Modules.

Validity Note \quad| The data and illustrations found in this book are not binding. We reserve the right to |
| :--- |
| modify our products in line with our policy of continuous product development. The |
| information in this document is subject to change without notice and should not be |
| construed as a commitment by Schneider Electric. |

Related
Documents

Product Related Warnings

User Comments

Title of Documentation	Reference Number
IEEE Std 518--1977, Guide for the Installation of Electrical	
Equipment to Minimize Electrical Noise Inputs to Controllers from	
External Sources	

Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

We welcome your comments about this document. You can reach us by e-mail at techpub@schneider-electric.com

Panel Software Options with A120 I/O Modules

1

Panel Software Option with A120 I/O Modules

Overview This section describes Panel Software options for the A120 series I/O Modules, and related information.

Panel Software Support

The Compact Controllers may be configured, I/O Mapped, and programmed using either Concept panel software, full-feature Modsoft panel software or Modsoft Lite depending upon the model.
Either software package may be installed on the Modicon P230, an IBM-AT, or compatible computer.
Programming and configuration editors used for a Compact are similar to those used for other 984s, special I/O Map screens have been designed for A120 I/O modules.

Concept (E984258/265/275/285 Only)

Concept may be used with the E984-258/265/275/285 models. Concept contains Function Block Diagram (FBD) and Sequential Function Chart (SFC) programming languages as well as a subset of data types of the international IEC 1131-3 norm. Concept features the following:

- FBD depicts process data flow typically suited for discrete and continuous control applications.
- SFC provides a graphical representation of the process.
- Instruction List is a text-based Boolean language used to build more complex applications.
- EFB is a "C" tool kit that permits you to create custom function blocks.
- Structured Text is ideal to implement complex equations.
- Ladder Diagram (ladder logic) complies with the IEC 1131-3 ladder diagram specification.
- LL984 inside Concept provides the same tools as Modsoft 984 ladder logic.

Concept operates with either: Windows 98, Windows NT, or Windows 2000. The E984-258/265/275/285 models are supported by three different Concept software packages: Concept M (372 SPU 472 01vxx), Concept XL (372 SPU 474 01vxx), and Concept 984 XL (372 SPU 479 0x).

Note: You must use Concept 2.1 or higher to operate the E984-258/265/275/285 models. Modsoft does not support these models.

For a detailed description of Concept and its operations, see the Concept User Manual (840 USE 49300).

Refer to I/O Configuration with Concept, p. 739, for a list of A120 I/O modules that are compatible with Concept.

\triangle CAUTION

Mode Malfunction Hazard

The output module Time Out States are only valid in a normal PLC stop state. Therefore, when the PLC powers down or goes into kernel mode, the outputs default to the modules fail safe state. The Time Out States are defined in the I/O Map modules parameter screens.

Failure to follow this instruction can result in injury or equipment damage.

Modsoft Lite (A984-1xx, E98424x/251/255 Only)

Modsoft Lite (371SPU921000) is provided on 3.5 inch diskettes. Standard panel software packages contain the following editors:

Editor	Description
Configuration	Defines controller and communication parameters, allocates memory, accesses controller operations and specials (e.g., battery coil register, timer register, and time-of-day clock)
I/O Map	Links discrete and register reference numbers to modules in the I/O subsystems. Defines I/O data types
Programmer	Generates, edits, monitors ladder logic, and accesses controller
Transfer	Loads programs from disk to controller, records 984 memory to disk, compares programs on disk and in memory
Print	Generates hard copy of user logic program and prints user comments
Environment	Defines default configurations for the panel software (e.g. printer setup, file locations)

For a detailed description of Modsoft lite and its operations, see the Modsoft Lite Programmer User Manual (GM-MSLT-001).

Modsoft-FullFeature (A9841xx, E984-24x/ 251/255 Only)

Modsoft full-feature (SW-MSxD-9SA) is an integrated software tool for programming, testing, and documenting application logic for 984 controllers. The full-feature Modsoft package includes all the editor functions available with Modsoft Lite along with enhanced features, including sequential function chart (SFC) and macros.

Sequential Function Charting: SFC allows you to generate programs arranged in steps rather than a linear ladder logic sequence, this is especially suitable for sequential processes. A sequential function chart can solve multiple networks in a parallel link or one in a choice of several networks in a selective link. Logic is solved within a block until a specified transition event informs the CPU to move to the next step. SFC allows application software to be created in a format that more closely emulates an actual machining procedure or process flow; it can help improve system throughput by solving only those networks specified by transition events rather than moving linearly through each network in the program on every scan.
Modsoft macros simplify the task of generating and updating large numbers of repetitive network structures. They allow you to create the repeating structure once, then specify the node values using macro parameters rather than standard 984 reference numbers. Each macro can contain up to 66 macro parameters-by using (*) wild card characters in your naming scheme, you can create thousands of * parameters per macro.

Note: If you are using full-feature Modsoft to develop application logic for a Compact system that will be using full Modsoft as its permanent programming software, you must be careful when dealing with SFC and macro ladder logic. You may develop your programs using the /p switch; this switch prevents you from creating SFC logic and does not reserve any registers or coils for SFC use-do not use macros in this case. Alternatively, you may develop programs with SFC and macros, then use the convert-to-file menu in Modsoft to produce an equivalent program in standard ladder logic that will run with other panel software.

For a detailed description of full-feature Modsoft and its operations, see the Modsoft Programmer User Manual (890 USE 115 00).
For a list of A120 I/O modules that are compatible with Modsoft refer to I/O Configuration of A120 Series I/O Modules with Modsoft, p. 821

Overview of the ADU 204/254 Analog Input Module

At a Glance

Purpose This chapter begins with an overview of the ADU 204/254 Analog Input Module. The chapter continues with discussions on field wiring, the noise suppression DIP switch, and calibration. Finally, the specifications are given, for the ADU 204/254 Analog Input Module.

What's in this This chapter contains the following topics: Chapter?

Topic	Page
What is the ADU 204/254 Analog Input Module?	24
ADU 204/254 Analog Input Module Conversion Ranges	25
ADU 204/254 Analog Input Module Field Wiring and LED Displays	30
ADU 204/254 Analog Input Module Noise Suppression DIP Switch	31
ADU 204/254 Analog Input Module Calibration	32
ADU 204/254 Analog Input Module Specifications	35

What is the ADU 204/254 Analog Input Module?

Brief Product Description

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The ADU 204/254 is a four-channel analog input module without opto-isolation. It performs dual-slope integrating A/D conversions, converting analog values into 12bit digital values in the recommended range. It may be used in conjunction with either two-wire $+/-500 \mathrm{mV}$ sensor field devices or PT100 four-wire resistance temperature detector (RTD) field devices. The ADU 254 functions just like the ADU 204, except that the ADU 254 operates at extended temperature.

Note: The ADU 254 model is available with conformal coating. The conformal coating model is ADU 254C, which meets Railway standard EN 50155.

ADU 204/254 Analog Input Module Conversion Ranges

Introduction

Conversion

 RangesThe ADU 204/254 is a four-channel analog input module without opto-isolation. It performs dual-slope integrating A/D conversions, converting analog values into 12bit digital values in the recommended range. It may be used in conjunction with either two-wire $+/-500 \mathrm{mV}$ sensor field devices or PT100 four-wire resistance temperature detector (RTD) field devices. The ADU 254 functions just like the ADU 204, except that the ADU 254 operates at extended temperature.

Note: The ADU 254 model is available with conformal coating. The conformal coating model is ADU 254C, which meets Railway standard EN 50155.

The PLC model determines the ranges. A table is provided below for each of the available ranges:
When the module goes out of range--either over or under range--and then returns to a valid operating range, the module will resume proper operations, unless your out-of-range condition reaches or exceeds the safety range of $+/-24 \mathrm{~V}$.

The following table gives the ranges for A984-1xx, E984-24x/251/255 PLC models:
$\left.\begin{array}{|l|l|l|}\hline \text { Input/Voltage } & \text { Data Count (Decimal) } & \text { Operating Results } \\ \hline \text { less than or equal to }+1 \mathrm{~V} & 0 & \text { Under range } \\ \hline-0.99 \ldots-0.501 \mathrm{~V} & 1 \ldots 2048 & \\ \hline-500 \mathrm{mV} & 2049 & \text { up arrow } \\ \ldots & \ldots \\ 0 \mathrm{mV} \\ \ldots\end{array}\right)$

Conversion table for Pt 100-200 degrees C to 850 degrees C for E984-258/265/ 275/285

The ranges for Pt 100-200 degrees C to 850 degrees C for E984-258/265/275/285 PLC models are:

Temp (degrees C)	$\mathbf{1 . 0}$ degrees C	$\mathbf{0 . 1}$ degrees C	$\mathbf{1 . 0}$ degrees F	$\mathbf{0 . 1}$ degrees F	$\mathbf{1 3}$-bit	15-bit +sign	Measuring step/value range
less than - 205	-32768	-32768	-32768	-32768	0	-32768	Under range
-200	-200	-2000	-328	-3280	3132	-7529	Nominal
0	0	0	+32	+320	4096	0	range
+850	+850	+8500	+1562	+15620	8191	32000	
greater than +870	+32767	+32767	+32767	+32767	8191	+32767	Over range

Conversion table for Pt 200-200 degrees C to 250 degrees C for E984-258/265/ 275/285

The ranges for Pt $200-200$ degrees C to 250 degrees C for E984-258/265/275/285 PLC models are:

Temp (degrees C)	$\mathbf{1 . 0}$ degrees C	$\mathbf{0 . 1}$ degrees C	$\mathbf{1 . 0}$ degrees F	$\mathbf{0 . 1}$ degrees F	$\mathbf{1 3 - b i t}$	15-bit + sign	Measuring step/value range
less than - 205	-32768	-32768	-32768	-32768	0	-32768	Under range
-200	-200	-2000	-328	-3280	819	-25600	Nominal
0	0	0	+32	+320	4096	0	range
+250	+250	+2500	+482	+4820	8191	32000	
greater than +256	+32767	+32767	+32767	+32767	8191	+32767	Over range

Conversion table The ranges for Ni 100-60 degrees C to 250 degrees C for E984-258/265/275/285 for Ni 100-60 degrees C to 250 degrees C for E984-258/265/ 275/285 PLC models are:

Temp (degrees C)	$\mathbf{1 . 0}$ degrees C	$\mathbf{0 . 1}$ degrees C	$\mathbf{1 . 0}$ degrees F	$\mathbf{0 . 1}$ degrees F	13-bit	15-bit +sign	Measuring step/value range
less than -32768 61	-32768	-32768	-32768	0	-32768	Under range	
-60	-60	-600	-328	-3280	819	-25600	Nominal
0	0	0	+32	+320	4096	0	range
+250	+250	+2500	+482	+4820	8191	32000	
greater than +256	+32767	+32767	+32767	+32767	8191	+32767	Over range

Conversion table for Ni 200-60 degrees C to 150 degrees C for E984-258/265/ 275/285

The ranges for Ni 200-60 degrees C to 150 degrees C for E984-258/265/275/285 PLC models are:

Temp (degrees C)	$\mathbf{1 . 0}$ degrees C	$\mathbf{0 . 1}$ degrees C	$\mathbf{1 . 0}$ degrees F	$\mathbf{0 . 1}$ degrees F	13-bit	15-bit + sign	Measuring step/value range
less than - 61	-32768	-32768	-32768	-32768	0	-32768	Under range
-60	-60	-600	-76	-760	2458	-12800	Nominal range
0	0	0	+32	+320	4096	0	(152

Conversion table The ranges for APt100-200 degrees C to 600 degrees C for E984-258/265/275/285 for APt100-200 degrees C to 600 degrees C for E984-258/265/ 275/285 PLC models are:

Temp (degrees C)	$\mathbf{1 . 0}$ degrees C	$\mathbf{0 . 1}$ degrees C	$\mathbf{1 . 0}$ degrees F	$\mathbf{0 . 1}$ degrees F	13-bit	15-bit +sign	Measuring step/value range
les than - 205	-32768	-32768	-32768	-32768	0	-32768	Under range
-200	-200	-2000	-328	-3280	2731	-10667	Nominal
0	0	0	+32	+320	4096	0	range
+600	+600	+6000	+1112	11120	8191	32000	
greater than +614	+32767	+32767	+32767	+32767	8191	+32767	Over range

Conversion table for APt200-200 degrees C to 250 degrees C for E984-258/265/ 275/285

The ranges for APt200-200 degrees C to 250 degrees C for E984-258/265/275/285 PLC models are:

Temp (degrees C)	1.0 degrees C	$\mathbf{0 . 1}$ degrees C	1.0 degrees F	$\mathbf{0 . 1}$ degrees F	13-bit	15-bit +sign	Measuring step/value range
less than - 205	-32768	-32768	-32768	-32768	0	-32768	Under range
-200	-200	-2000	-328	-3280	819	-25600	Nominal range
0	0	0	+32	+320	4096	0	ang
+250	+250	+2500	+482	+4820	8191	32000	
greater than +256	+32767	+32767	+32767	+32767	8191	+32767	Over range

Conversion table The ranges for R, 0 to 400 ohms for E984-258/265/275/285 PLC models are: for R, $\mathbf{0}$ to 400 ohms for E984258/265/275/285

Resistance in ohms	13-bit	15-bit + sign	Value range
0	0	0	Recommended
100	2048	+8000	nominal range
200	4096	+16000	
399.902	8191	+32000	
Greater than or equal to 400	8191	+32767	Over range

Note: In RTD applications, the internal precision source forces a 2.5 mA current through the resistance. For a PT 100 RTD, a range of $18.49 \ldots 390.25$ ohms would correspond to $-200 \ldots+850$ degrees C ; the values 80.31 ohms (-50 degrees C) to 194 ohms (+250 degrees C) are in the recommended range. Consult your RTD data book for the appropriate linearization equations for your field device.

A WARNING

Unit Damage Hazard

Operation at an extreme out-of-range voltage--at or beyond +/-24 V--will cause permanent damage to the module.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

The ADU 204/254 operates off the 5 V supply voltage provided internally over the I/O bus.

ADU 204/254 Analog Input Module Field Wiring and LED Displays

Introduction
 The ADU 204/254 module may be field wired for any combination of RTD or 500 mV

 inputs at its four analog channels.Note: Unused inputs should always be jumpered. Therefore, jumper pins $3 \ldots 6$ for channel 1, pins $7 \ldots 10$ for channel 2, pins $14 \ldots 17$ for channel 3, pins $18 \ldots 21$ for channel 4.

Wiring Diagram
The following illustration is a wiring diagram and simplified schematic for the ADU 204/254 analog input module.

ADU 204/254 Analog Input Module LED

The ADU 204/254 has one green LED opposite terminal screw 1, used to indicate the presence of the 5 V power supply from the backplane.

ADU 204/254 Analog Input Module Noise Suppression DIP Switch

Introduction

Changing the Switch Setting

A two-position DIP switch on the back of the ADU 204/254 can be set to protect the module from external noise interference.

The factory setting is for 50 Hz voltage interferences. By alternating the switch position, you can set the device for 60 Hz noise suppression.
The following illustration shows the noise suppression switch on the rear of the ADU 204/254.

ADU 204/254 Analog Input Module Calibration

Introduction

Calibrating the Analog Input Channels

By adjusting the two potentiometers on the top of the ADU 204/254, you can calibrate the four analog input channels to an accuracy of $+/-3$ counts over the recommended linear count range of the module (2049... 6143).

The following illustration shows the location of the potentiometers on the ADU 204.

To adjust the potentiometers:

Adjusting the Potentiometers

The following are the steps to adjust the potentiometers on the 204/254 Input Module:

Step	Action
1	Stop your A984-1xx controller.
2	Using the DIP switch on the back of the module, set it for the desired noise suppression.
3	To calibrate all analog channels, install a precision 200 ohm ($+/-1 \%$) resistor across each input, as instructed below. Note: Make sure all jumper wires are the same length and resistor/wire connections are of high quality.
4	Identify the active input point by taking a precision multimeter and connecting it across each of the 200 ohm resistors. Only one point will display approximately 500 mV; the other three points will equal 0 mV. The identified point is the last point polled by the A/D converter, and is the only point presently outputting the 2.5 mA constant current source.
5	Having identified the active input point, use the precision Multimeter to adjust potentiometer "A" for a reading of 500 mV (+/-100 mV). This adjustment calibrates the internal 2.5 mA constant current source.
6	START the 984-1xx controller and enter the Online Reference screen to view the input values associated with the ADU 204: $3 X X X 16143$ $3 X X X 26143$ $3 X X X 46143$
$3 X X X 36143$	
You need one input data register per channel.	

Step	Action
9	The following illustration shows a 200 ohm resistor across each Input on the ADU 204.

ADU 204/254 Analog Input Module Specifications

Table of Specifications

The following table contains a list of ADU 204/254 specifications.

Module Topology	Number of Channels Isolation	4	
		Non-isolated, channel-to-bus or channel-to-channel	
	Signal types supported	Two-pole voltage inputs	
		Four-pole RTD inputs	
Required Loadable	SW-IODR-001		
Power Supply	Internally provided source	5 V , less than 50 mA from I/O bus	
DIN Rail Grounding	Less than 0.1 ohms		
Voltage Input Capabilities	Linear Measuring Range	+/-0.5 V nominal	
	Channel over range delay	250 ms at $+/-1 \mathrm{~V}$, corresponding to the maximum negative or positive decimal value	
	Input Impedance	greater than 10M ohms	
	Input Voltage	24 V maximum	
	Wire Size	One wire	14 AWG
		Two wires	20 AWG
RTD Input Capabilities	PT100 RTD Impedance Range	18.49 ... 390.26 ohms	
	Temperature Measuring Range	-200 ... +850 degrees C	
	Resolution	0.25 degrees C	

A/D Conversion	Conversion Time	@4096 in	$80 \mathrm{~ms} /$ input (max) @ 50 Hz suppression
		@2048 in	$66.6 \mathrm{~ms} /$ input (max) @ 60 Hz suppression
			60 ms /input (max) @ 50 Hz suppression
			50 ms /input (max) @ 60 Hz suppression
	Resolution	12 bits recommended range (+1)	
	In-range Error Limit	0.4% of input value @ $0 . . .60$ degrees C	
	Nonlinearity	+/-2 counts @ 0 ... 60 degrees C	
Environmental Characteristic	Operating Temperature	0 ... 60 degrees C for ADU 204 $-40 \ldots+70$ degrees C for ADU 254	
I/O Map	Register 3x/4x	4 in/0 out	
Dimensions (WxHxD)		$40.3 \times 145 \times 117.5 \mathrm{~mm}$	
		$1.6 \times 5.6 \times 4.5$ in	
Weight		220 g	
		. 5 lb	
Agency Approvals	ADU204: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.		
	ADU254C: Railway standard EN 50 155; and European Directive EMC 89/336/EEC Standards. UL 508; CSA 22.2 No. 142; FM Class I, Div 2 pending.		

Overview of the ADU 205 Analog Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the ADU 205 analog input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the ADU 205 Analog Input Module?	38
ADU 205 Analog Input Module Conversion Ranges	39
ADU 205 Analog Input Module Switch Settings	42
ADU 205 Analog Input Module Field Wiring	43
ADU 205 Analog Input Module Calibration	45
ADU 205 Analog Input Module Specifications	47

What is the ADU 205 Analog Input Module?

Brief Product The ADU 205 is a four-channel analog input module without opto-isolation. It Description performs dual-slope integrating A/D conversions, converting analog values into 12-bit digital values plus sign. It can handle either voltage inputs in the range of $+/-20 \mathrm{~V}$ or current inputs in the range of $+/-40 \mathrm{~mA}$. The linear input data range is from 2049 ... 6143.

ADU 205 Analog Input Module Conversion Ranges

Introduction

A984-1xx, E98424x/251/255 PLC Models

The ADU 205 is a four-channel analog input module without isolation. It performs dual-slope integrating A/D conversions, converting analog values into 12-bit digital values plus sign. It can handle either voltage inputs in the range of $+/-20 \mathrm{~V}$ or current inputs in the range of $+/-40 \mathrm{~mA}$. The linear input data range is from $2049 \ldots 6143$.

The PLC model determines the available ranges. Refer to the tables below.

A984-1xx, E984-24x/251/255 PLC Models

Input Signals			
Voltage	Current	Data Count (Decimal)	Operating Results
$<=-20 \mathrm{~V}$	$<=-40 \mathrm{~mA}$	0	Under Range
$-19.99 \ldots-10.001 \mathrm{~V}$	$-39.99 \ldots-20.1 \mathrm{~mA}$	$1 \ldots 2048$	
-10 V	-20 mA	2049	\uparrow
\ldots	\ldots	\ldots	
0 V	0 mA		
\ldots			
+10 V	+20 mA	4096	
\ldots	\ldots		
$10.001 \ldots 19.99 \mathrm{~V}$	$20.1 \ldots 39.99 \mathrm{~mA}$	$6144 \ldots 8191$	Recommended operating range \ldots
$>=+20 \mathrm{~V}$	$>=40 \mathrm{~mA}$	8192	\downarrow

+/-20 mA, +/-40 mA for E984-258/ 265/275/285 PLC Models
+/-20 mA, +/-40 mA for E984-258/265/275/285 PLC Models

Input current (mA)	12-bits	13-bits	16-bits	12-bits +sign	15-bits +sign	Range
$<-20 /-40$	0	0	0	-4095	-32768	Under-range
$-20 /-40$	0	0	0	-4095	-32000	Nominal range
0	2048	4096	32768	0	0	
$+20 /+40$	4095	8191	65520	+4095	+32000	
$>+20 /+40$	4095	8191	65520	+4095	+32767	Overrange

+/- 10 VDC, +/- 20 VDC for E984258/265/275/285 PLC Models
+/- 10 VDC, +/- 20 VDC for E984-258/265/275/285 PLC Models

Input current VDC	12-bits	13-bits	16-bits	12-bits +sign	15-bits +sign	Range
$<-20 /-40$	0	0	0	-4095	-32768	Under-range
$-10 /-20$	0	0	0	-4095	-32000	Nominal range
0	2048	4096	32768	0	0	
$+10 /+20$	4095	8191	65520	+4095	+32000	
$>+10 /+20$	4095	8191	65520	+4095	+32767	Overrange

0 ... 10 VDC, 0 ... 20 VDC for E984258/265/275/285 PLC Models

0 ... 10 VDC, 0 ... 20 VDC for E984-258/265/275/285 PLC Models

Input current VDC	12-bits	13-bits	16-bits	12-bits +sign	15-bits +sign	Range
<0	0	0	0	-4095	-32768	Under-range
0	0	0	0	0	0	Nominal range
$10 / 20$	4095	8191	65520	+4095	+32000	
$>10 / 20$	4095	8191	65520	+4095	+32767	Overrange

0 ... 20 mA for E984-258/265/ 275/285 PLC Models

0 ... 20 mA for E984-258/265/275/285 PLC Models

Input current mA	12-bits	13-bits	16-bits	12-bits +sign	15-bits +sign	Range
<0	0	0	0	-4095	-32768	Under-range
0	0	0	0	0	0	Nominal range
20	4095	8191	65520	+4095	+32000	
>20	4095	8191	65520	+4095	+32767	Overrange

4 ... 20 mA for E984-258/265/ 275/285 PLC Models

4 ... 20 mA for E984-258/265/275/285 PLC Models

Input current mA	12-bits	13-bits	16-bits	12-bits +sign	15-bits +sign	Range
$<0 \ldots 2$	0	0	0	0	0	Wire breakage
$2.1 \ldots 3.61$	0	0	0	0	-32768	Under-range
$3.62 \ldots 3.99$	0	0	0	0		Tolerable
4	0	0	0	0	0	Nominal range
20	4095	8191	65520	+4095	+32000	
>20	4095	8191	65520	+4095	+32767	Overrange

The ADU 205 operates off the 5 V supply voltage provided internally over the I/O bus.

When the module goes out of range-either over or under range-and then returns to a valid operating range, the module will resume proper operations unless your out-of-range condition reaches or exceeds the safety range of $+/-30 \mathrm{Vdc}$.

\triangle CAUTION

Do not operate at extreme ranges.

Operating at an extreme out-of-range voltage-at or beyond +/-30 Vdc-will cause permanent damage to the module.
Failure to follow this instruction can result in injury or equipment damage.

The ADU 205 has one green LED opposite terminal screw 1. This LED is used to indicate the presence of the 5 V power supply from the backplane.

ADU 205 Analog Input Module Switch Settings

Introduction

Changing the Switch Settings

Two two-position DIP switches are located on the back of the ADU 205.

Switch 2 is used to specify whether the inputs are voltage or current inputs; switch 1 is used to set external noise interference protection for the module.

The following illustration shows the switches on the rear of the ADU 205.

ADU 205 Analog Input Module Field Wiring

Introduction

Wiring Diagram

The module will be field wired differently, depending on whether the field device provides voltage or current inputs.

The following illustration is a wiring diagram and simplified schematic for the ADU 205 analog input module (voltage mode).

The following illustration is a wiring diagram and simplified schematic for the ADU 205 analog input module (current mode).

Note: The jumpers at terminals 5-6, 9-10, 16-17, and 20-21 are factory set to reference the input source(s) to ground. If the source(s) that you use are already grounded, remove the associated jumper(s) to omit ground looping problems and possible module failure.

A CAUTION

Operation Failure Hazard

When the installed jumpers reference a ground on the negative input and using a grounded power supply, the full loop supply voltage causes the module to fail. We recommend that you wire the loop supply to the negative input side of your module.
Failure to follow this instruction can result in injury or equipment damage.

ADU 205 Analog Input Module LED

The ADU 205 has one green LED opposite terminal screw 1, used to indicate the presence of the 5 V power supply from the backplane.

ADU 205 Analog Input Module Calibration

Introduction

Calibrating the Analog Input Channels

By adjusting a single potentiometer on the top of the ADU 205, you can calibrate the four analog input channels to an accuracy of $+/-3$ counts over the recommended linear count range of the module (2049 ... 6143).

The following illustration shows the location of the potentiometer on the ADU 205.

The following procedure is for voltage inputs. The process is nearly identical for current inputs, except that the input signals applied to each channel must be - 20 mA , 0 mA , and +20 mA . To adjust the potentiometers:

Step	Action
1	Using the DIP switch on the back of the module, set it for the desired noise suppression.
2	Calibrate analog channel 1 by wiring terminal 3 to the positive side, and terminals 5 and 6 to the negative side, of a voltage standard - as shown in the following figure.
3	Connect terminals $7,9,10,14,16,17,18,20$, and 21 to each other.
4	Set the voltage standard to +10 V and adjust the potentiometer until you get a reading of 6143 counts.
5	Set the voltage standard to - 10 V , and adjust the potentiometer until you get a reading of $2049+/-1$ count.
6	Check the accuracy of your midrange setting by setting the voltage standard to 0 V ; the reading should be at or within a count of 4096 counts. Then recheck your high range count by setting the voltage standard to +10 V ; the reading should be within 3 counts of 6143 .
7	Verify the calibration adjustment on the other three analog channels: for channel 2 , wire terminals 7,9 , and 10 to the voltage standard; for channel 3 , use terminals 14,16 , and 17 ; and for channel 4 , use terminals 18,20 , and 21 . If you make any fine tuning adjustments on any of these channels, verify their effects on channel 1.
8	When you are satisfied with the readings on all four channels, drop a bead of sealing varnish on the potentiometer to secure its setting.

ADU 205 Analog Input Module Specifications

Table of Specifications

The following table contains a list of system-specific specifications for the ADU 205 Analog Input Module.

Module Topology	Number of Channels	4	
	Isolation	Non-isolated, channel-to-bus or channel-to-channel	
	Signal types supported	Two-pole voltage inputs	
Power Supply	Internally provided source	5 V , less than 50 mA from I/O bus	
Voltage Input Capabilities	Linear Measuring Range	Nominal	+/-10 V
		Maximum	+/-19.99 V
	Input Impedance	50 ohms	
	Absolute Maximum Input Voltage	+/-30 V	
	Wire Size	One wire	14 AWG
		Two wires	20 AWG
A/D Conversion	Conversion Time	$\begin{aligned} & \text { Each input @ } \\ & 4096 \text { in } \end{aligned}$	$\begin{aligned} & 80 \mathrm{~ms}(\max) @ \\ & 50 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & 66.6 \mathrm{~ms} \text { (max) } \\ & @ 60 \mathrm{~Hz} \end{aligned}$
		$\begin{aligned} & \text { Each input @ } \\ & 2048 \text { in } \end{aligned}$	$\begin{aligned} & 60 \mathrm{~ms} \text { (max) @ } \\ & 50 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & 50 \mathrm{~ms}(\max) @ \\ & 60 \mathrm{~Hz} \end{aligned}$
	Resolution	12 bits recommended range (+1)	
	In-range Error Limit	0.5% of input value @ $0 . . .60$ degrees C	
	Nonlinearity	+/-2 counts @ 0... 60 degrees C	
Noise Suppression	Normal Mode Rejection	40 dB minimum	
	Common Mode Rejection	86 dB minimum	
I/O Map	Register 3x/4x	$4 \mathrm{in} / 0$ out	

The following table gives general specifications for the ADU 205 Analog Input Module.

Dimensions (WxHxD)	$40.3 \times 145 \times 117.5 \mathrm{~mm}$
	$1.6 \times 5.6 \times 4.5 \mathrm{in}$
Weight	220 g
	.5 lb.
Agency Approvals	ADU204: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.
	VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.

Overview of the ADU 206/256 Analog Input Module

4

At a Glance

Purpose The purpose of this chapter is to describe the ADU 206/256 analog input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the ADU 206/256 Analog Input Module?	50
ADU 206/256 Analog Input Module Conversion Ranges	51
ADU 206/256 Analog Input Module Physical Characteristics	55
ADU 206/256 Analog Input Module Configuration	58
ADU 206/256 Analog Input Module Programming Modes	60
ADU 206/256 Analog Input Module Calibration	68
ADU 206/256 Analog Input Module Specifications	71

What is the ADU 206/256 Analog Input Module?

Brief Product Description

The ADU 206/256 is a four-channel analog input module with opto-isolation. It performs dual-slope integrating A/D conversions, converting analog input signals into digital values based on the principle of successive approximation. The ADU 256 functions just like the ADU 206, except that the ADU 256 operates at extended temperature.

Note: The ADU 256 model is available with conformal coating. The conformal coating model is ADU 256C, which meets Railway standard EN 50155.

A WARNING

The ADU 206/256 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

ADU 206/256 Analog Input Module Conversion Ranges

Introduction The ADU 206/256 is a four-channel analog input module with opto-isolation. It performs dual-slope integrating A/D conversions, converting analog input signals into digital values based on the principle of successive approximation. The ADU 256 functions just like the ADU 206, except that the ADU 256 operates at extended temperature.

Note: The ADU 256 model is available with conformal coating. The conformal coating model is ADU 256C, which meets Railway standard EN 50155.

A WARNING

Faulty operation.

The ADU 206/256 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

Conversion Ranges

The ADU 206/256 module has the following characteristics:

- Voltage/current input selection is made using jumpers; range values are set in the software.
- Operates off the 5 V supply voltage provided internally over the I/O bus, along with a user-supplied 24 VDC external power source.
- Resolution is 11 Bit + sign or 12 Bit, depending on the input range selected.
- Out-of-range status indication is software selectable.

The PLC model determines the ranges. A table is provided below for each of the following:

- 0... 10 VDC/2... 10 VDC, $0 . . .20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}$ for E984-258/265/275/285
- +/-10 VDC/ +/-20 mA for E984-258/265/275/285

Note: See the Specifications section for the ranges for the A984-1xx, E984-24x/ 251/255 PLC models

The following table lists the input ranges for voltage/current input selection.

Voltage	Current
$+/-1 \mathrm{~V}$	$+/-20 \mathrm{~mA}$
$+/-10 \mathrm{~V}$	$4 \ldots 20 \mathrm{~mA}$
$0 \ldots 1 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
$0 \ldots 10 \mathrm{~V}$	
$0.2 \ldots 1 \mathrm{~V}$	
$2 \ldots . .10 \mathrm{~V}$	

The ranges for 0... 10 VDC/2... 10 VDC, 0... $20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ for E984-258/265/ 275/285 PLC models are:

Input voltage (VDC)	Current (mA)	12-bits	16-bits	11-bits + sign	15-bits + sign	Measuring step/value range
	0	0	0	0	Under range	
	0	0	0	0	Neg. tolerance range	
0/2	$0 / 4$	0	0	0	0	Nominal range
10	20	4000	64000	+2000	+32000	ros.
$10.01 \ldots$	$20.02 \ldots$	4001	64016	+2001	+32016	Pos. tolerance range
greater than/equal to $10.24 / 10.19$	greater than/equal to $20.48 /$ 20.39	4095	65520	+2047	+32760	Over range

The ranges for +/-10 VDC/ +/-20 mA for E984-258/265/275/285 PLC models are:

Input voltage (VDC)	Current (mA)	12-bits	16-bits	11-bits + sign	$\begin{aligned} & \text { 15-bits + } \\ & \text { sign } \end{aligned}$	Measuring step/value range
less than or equal to - 10.24	less than or equal to -20.48	0	0	-2048	-32768	Under range
-10.01	-20.02	47		-2001	-32016	Neg. tolerance range
$\begin{aligned} & -10.00 \\ & 0 \\ & +10.00 \end{aligned}$	$\begin{array}{\|l\|} \hline-20 \\ 0 \\ +20 \end{array}$	$\begin{aligned} & 48 \\ & 2048 \\ & 4048 \end{aligned}$	$\begin{aligned} & 768 \\ & 32768 \\ & 64768 \end{aligned}$	$\begin{array}{\|l} \hline-2000 \\ 0 \\ +2000 \end{array}$	$\begin{array}{\|l\|} \hline-32000 \\ 0 \\ +32000 \end{array}$	Nominal range
+10.01	+20.02.					
10.01...	20.02...	4049		+2001	+32016	Pos. tolerance range
greater than or equal to 10.24	greater than or equal to 20.48	4095	65520	+2047	+32752	Over range

ADU 206/256 Analog Input Module Physical Characteristics

Illustration The ADU 206/256 can be installed in any slot in the A120 subracks (DTA 200, 201,

 and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided.A front view with ADU 206 label is provided below.

LEDs The ADU 206/256 has two green LEDs:

- The LED opposite field wiring terminal \#1 indicates the presence of 24 Vdc power from the external source (ON = power supplied; OFF = power off.
- The LED opposite field wiring terminal \#12 indicates the condition of the processor/module (ON = fault-free operation; OFF = fault condition).

Note: The controller must be running for the READY LED to illuminate.

Simplified Schematic

A simplified schematic for the ADU 206/256 is provided below.

ADU 206/256 Analog Input Module Configuration

Introduction	The following items must be addressed when configuring the ADU 206/256: - The module must be I/O mapped as five $3 x$ input registers and one $4 x$ output register. Binary must be set for data type. - Make connections and assignments of input addresses. - Identify overall mode of operation, type of input, and error indication. - Cabling guidelines.
Cabling	- Shielded, twisted pair cable (2 or $4 \times 0.5 \mathrm{~mm}$ per channel) should be used. All channels can be connected with a common shielded cable. - Connect shield to ground (GND) on one side with a short cable (less than 8 in). - Observe a minimum distance of 20 in. between the module and power lines or other sources of electrical disturbance.
Connection and	
Assignment of	Note: Detailed Compact 984 cabling and installation instructions are found in the Input Addresses User Guide.

Connection and Assignment for Current Inputs

Connection and
 Assignment for Voltage Inputs

- Jumper 3-4 for input 1
- Jumper 7-8 for input 2
- Jumper 14-15 for input 3
- Jumper 18-19 for input 4

For voltage inputs:

- Jumper 5-6 for input 1
- Jumper 9-10 for input 2
- Jumper 16-17 for input 3
- Jumper 20-21 for input 4

Corresponding input signal names or addresses can be entered on the blank label (supplied).

Wiring Diagram
An ADU 206/256 wiring diagram and associated registers for inputs are provided below.

ADU 206/256 Analog Input Module Programming Modes

Introduction

4x Control
 Register

The ADU 206/256 is a four-channel analog input module. Its field connector is wired depending on the type of input to be measured, either voltage or current. Any of the four inputs can be either voltage or current, and any combination of the four may be used if levels are within the programmed range for the channel.

The module can operate in one of several modes, and the input channel ranges are individually selectable. The mode and ranges are set by an I/O mapped $4 x$ register.
Five sequential $3 x$ registers must also be I/O mapped. The first register is used to read module operating status, and the remainder contain data representing voltage or current levels at the four channel inputs. Channel input data is updated every 10 ms .

The operating mode of the module and individual channel ranges are set using the lower 7 bits of the 4 x register.
Options are:

Bit	Operating Mode Setting
$000 X$	Bipolar mode without overrange indication
$001 X$	Unipolar mode without overrange indication
$002 X$	Bipolar with offset and extended resolution without overrange indication
$003 X$	Unipolar with offset and extended resolution without overrange indication
$004 X$	Bipolar mode with overrange indication
$005 X$	Unipolar mode with overrange indication
$006 X$	Bipolar with offset and extended resolution with overrange indication
$007 X$	Unipolar with offset and extended resolution with overrange indication

Note: These values are in Hexadecimal.
where the X value determines the individual channel range:
1 = expanded voltage range (10 V)
$0=$ normal voltage range (1 V)

The following diagram illustrates bits in the ADU 206/256 control word and their meanings.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | channel is above the top end (+ or -) of its measurement range. [See the status word description for more information.]

[5] If set, the module measures current or voltage with an offset over a restricted range, i.e., $4 \ldots 20 \mathrm{~mA}, 0.2$... 1 V , or $2 \ldots 10 \mathrm{~V}$.
[4] If set, the module measures current or voltage in 12 bit unipolar mode.
[3] Defines the measuring range of Channel 4. If $=1$, the upper range will be 10 V . Must be set to 0 for current mode operation.
[2] Defines the measuring range of Channel 3. If $=1$, the upper range will be 10 V . Must be set to 0 for current mode operation.
[1] Defines the measuring range of Channel 2. If $=1$, the upper range will be 10 V . Must be set to 0 for current mode operation.
[0] Defines the measuring range of Channel 1. If set, the upper range will be 10 V . Must be set to 0 for current mode operation.

4x Control Register Quick Reference

A quick reference diagram of the ADU 206/256 4x Control Register is provided below.

EXAMPLE:
00000000011011100
NOT USED

CH 3 and CH 4
Expanded Ranges

Module set to Unipolar Mode

Overrange Indication
Requested

3X Status and Data Registers

The bit significance of the first $3 x$ input register, which displays the module status, is displayed in the following illustration. The next four registers contain data representative of the individual channel input values. Refer to the rest of the information in this map for more detail about the values that may be expected.

Data values are the result of the type of input selected, the field connector wiring, the module operating mode selected, and the range selected for the channel (normal or expanded).

I/O Map Registers	Data
$3 x$	Module status information
$3 x+1$	Input \#1 data
$3 x+2$	Input \#2 data
$3 x+3$	Input \#3 data
$3 x+4$	Input \#4 data

The following diagram illustrates bits in the ADU 206/256 status word and their meanings.

[15-8] Not Used
[7] Set until the processor within the module is ready. After the processor is operational this bit will be set if any of bits $0-3$ of the status word are set or if a processor fault occurs
[6] Set if the external supply voltage to the module is disconnected.
[5] Reflects the state of Bit 5 of the control word.
[4] Reflects the state of Bit 4 of the control word.
[3] If set, indicates that the input to Channel 4 has exceeded the anticipated $+/$ - limit, or indicates an open circuit in 4 ... 20 mA operation (unipolar and bipolar with offset).
[2] If set, indicates that the input to Channel 3 has exceeded the anticipated $+/$ - limit, or indicates an open circuit in 4 ... 20 mA operation (unipolar and bipolar with offset).
[1] If set, indicates that the input to Channel 2 has exceeded the anticipated $+/$ - limit, or indicates an open circuit in 4 ... 20mA operation (unipolar and bipolar with offset).
[0] If set, indicates that the input to Channel 1 has exceeded the anticipated +/- limit, or indicates an open circuit in 4 ... 20mA operation (unipolar and bipolar with offset).

30xxx Status Register Quick Reference

A quick reference diagram of the ADU 206/256 30xxx Status Register is provided below.

EXAMPLE:

Types of Modes and Their Functions

When power is first applied to the module, it will be in a state equivalent to all of the control bits being 0 . As long as power to the unit is maintained, the operating mode of the module will be unchanged through a stop/start cycle.

When the module goes out of range-either over or under range-and then returns to a valid operating range, the module will resume proper operations unless your out-of-range condition reaches or exceeds the safety range of $+/-30$ VDC.

A WARNING

Extreme out-of-range voltage.

Operation at an extreme out-of-range voltage-at or beyond +/-30 VDC-will cause permanent damage to the module.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

Bipolar (000X, 004X)

Bipolar mode is selected by setting the control word to the value 000X, where X defines the range of any channels used for voltage measurement. In this mode, if out of range indication is requested (control word $=004 x$), it will turn on at voltages/ currents exceeding the +/- maximum value. Refer to status word description.
The following table describes the current/voltage values in bipolar mode.

Current	Normal Voltage	Expanded Voltage	Value
-20 mA	-1 V	-10 V	48
0 mA	0 V	0 V	2048
+20 mA	+1 V	+10 V	4048

Unipolar (001X, 005X)

This mode is selected by setting the control word to the value 001 X , where X defines the range of any channels used for voltage measurements. In this mode, if overrange indication is requested (i.e., control word $=005 \mathrm{X}$), it will turn on if an input exceeds the maximum range value. Refer to status word description.

The following table describes the current/voltage values in unipolar mode.

Current	Normal Voltage	Expanded Voltage	Value
0 mA	0 V	0 V	0
20 mA	+1 V	+10 V	4000

Bipolar with Offset and Extended Resolution (002X, 006X)

This mode is selected by setting the control word to the value 002 X , where X defines the range of any channels used for voltage measurements. In this mode, the out of range indication is set whenever the inputs are less than 10% of the range maximum value (i.e., $2 \mathrm{~mA}, 0.1 \mathrm{~V}$ or 1 V). This serves as a broken wire detector in addition to being a low input indicator. The out of range indication request bit does not have to be set, and the indication will reset once the input returns to the active range. In this mode, if overrange indication is requested (control word $=006 \mathrm{X}$), it will turn on if an input exceeds the maximum range value. Refer to status word description.

The following table describes the current/voltage values in bipolar mode with offset and extended resolution.

Current	Normal Voltage	Expanded Voltage	Value
4 mA	0.2 V	2 V	2048
20 mA	1 V	10 V	4048

Unipolar with Offset and Extended Resolution (003X, 007X)

This mode is selected by setting the control word to the value 003 X , where X defines the range of any channels used for voltage measurements. In this mode, the out of range indication is set whenever the inputs are less than 10% of the range maximum value (i.e., $2 \mathrm{~mA}, 0.1 \mathrm{~V}$ or 1 V). This serves as a broken wire detector in addition to being a low input indicator. The out of range indication request bit does not have to be set, and the indication will reset once the input returns to the active range. In this mode, if overrange indication is requested (control word $=007 \mathrm{X}$), it will turn on if an input exceeds the maximum range value. Refer to status word description.
The following table describes the current/voltage values in unipolar mode with offset and extended resolution are.

Current	Normal Voltage	Expanded Voltage	Value
4 mA	0.2 V	2 V	0
20 mA	1 V	10 V	4000

ADU 206/256 Analog Input Module Calibration

Introduction By adjusting the two potentiometers located on the top of the ADU 206/256, you can independently calibrate both the normal and expanded ranges for the four input channels.

ACAUTION
Return units requiring calibration.
Modicon recommends that units requiring recalibration be returned to the factory,
since inaccuracies could be due to faulty components. However, users who wish
to perform their own calibration should use the following procedure.
Failure to follow this instruction can result in injury or equipment damage.

Calibrating the Analog Input Channels

In the procedure that follows, R65 is used to calibrate the normal ranges, and R64 is used to calibrate the expanded ranges. Items required for calibration are:

- A 1 VDC Power Supply (+/-0.1 mV)
- A 10 VDC Power Supply (+/-1.0 mV)
- A voltmeter with appropriate scales and accuracy of 0.2... 0.5 parts/million

The following illustration shows the location of the potentiometers on the ADU 206/ 256.

Adjusting the Potentiometers Procedure

Use the following procedure to adjust the potentiometers.

Step	Action
1	Connect a 1 VDC source (+/-0.1 mV), verified with the voltmeter, to the four voltage inputs. Set the module for Unipolar mode and all channels for Normal range. Adjust R65 for a reading of 4000 counts on Channel 1. Channels 2... 4 should read 4000, +/-2 counts.
2	Set the module to Bipolar mode and check all channels for a reading of 4048 +/ -2 counts.
3	Reverse the 1 VDC supply polarity and check all channels in Bipolar mode. All channels should read 48 +/-2 counts.
4	Set the module for Unipolar mode and all channels for Expanded range. Connect a 10 VDC source (+/-1.0 mV), verified with the voltmeter, to the four voltage inputs. Adjust R64 for a reading of 4000 counts on Channel 1. Channels 2 to 4 should read 4000, +/-2 counts.
5	Set the module to Bipolar mode and check all channels for a reading of 4048 +/ -2 counts.
6	Reverse the 10 Vdc supply polarity and check all channels in Bipolar mode. All channels should read 48 +/-2 counts.
7	When satisfied with the readings on all four channels, drop a bead of sealing varnish on both potentiometers' adjusting screws to secure their settings.

ADU 206/256 Analog Input Module Specifications

Table of Specifications

The following table contains a list of ADU 206/256 specifications.

Module Topology		Number of Channels		4			
		Data Format		Two-pole as voltage or current inputs			
		Isolation		Channel-to-bus			500 V
				Channel-to-external supply			500 V
				Nonisolated channel-to-channel			
Power Supply		External		24 Vdc	Typical		70 mA
					Maximum		100 mA
		Internal Source (from I/O bus)		5 Vdc	Typical		60 mA
				Maximum			
		Power Dissipation			Typical		2Ω
					Maximum		3Ω
Voltage Input		Linear Measuring Range					
A984-1xx, E984-24x/251/255 PLC Models							
Analog Value Voltage Inputs (V)		Current Inputs (mA)			Decimal Value	Ext. Resolution	Comments
+/-1 V	+/-10 V	2... 10 V	+/-20 mA	4... 20 mA			
-1.024 ...	-10.24		-20.48 ...		0		Under range in dication in status word
-1.015	-10.15		20.30				
-1.001	-10.01 ...		-20.02		47		
-1.00	-10.00		-20.00		48		
-0.50	-5.00		-10.00		1048		
-0.10	-1.00		-2.00		1848		
-0.050	-0.50		-1.00		1948		
-0.01	-0.10		-0.20		2028		
-0.001	-0.01		-0.02		2046		Linear Range
-0.0005	-0.005		-0.01		2047		
0.00	0.00	+2.00	0.00	+4.00	2048	0	

+0.0005	+0.005	+2.004	+0.01	+4.008	2049		
+0.001	+0.01	+2.008	+0.02	+4.016	2050		
+0.01	+0.10	+2.08	+0.20	+4.16	2068		
+0.050	+0.50	+2.40	+1.00	+4.80	2148		
+0.10	+1.00	+2.80	+2.00	+5.60	2248		
+0.50	+5.00	+6.00	+10.00	+12.00	3048		Over range Indication in Status Word
+1.00	+10.00	+10.00	+20.00	+20.00	4048	4000	
$+1.015 \ldots$	$+10.15 \ldots$	$+10.155 \ldots$	$+20.30 \ldots$	$+20.30 \ldots$			
+1.024	+10.24	+10.19	+20.47	+20.38	4095		

Agency Approvals	ADU206: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.	
	ADU256C: Railway standard EN 50 155; European Directive EMC 89/ 336/EEC Standards. UL 508; CSA 22.2 No.142; and FM Class I, Div 2 pending.	

Overview of the ADU 210 Isolated Analog Input Module

At a Glance

Purpose The purpose of this chapter is to describe the ADU 210 isolated analog input module.

What's in this
This chapter contains the following topics:

Topic	Page
What is the ADU 210 Isolated Analog Input Module?	76
ADU 210 Isolated Analog Input Module Physical Characteristics	77
Installing the ADU 210 Isolated Analog Input Module	79
ADU 210 Isolated Analog Input Module Operation	81
ADU 210 Isolated Analog Input Module Specifications	85

What is the ADU 210 Isolated Analog Input Module?

Brief Product Description

The ADU 210 is a four-channel analog input module with opto-isolation. It performs analog-to-digital conversions using a delta-sigma conversion method, converting analog input signals into digital values. The ADU 210 module has the following characteristics:

- Voltage/Current input selection is made by appropriate wiring; the range values are set via the panel software.
- Operates off the 5 V supply voltage provided internally over the I/O bus, along with a user-supplied 24 VDC external power source.
- Provides 300 volts maximum channel-to-channel isolation.
- Provides a 15 -bit + sign resolution.
- Errors are noted via the Concept I/O Map Status Word.
- Input selection and range can be set independently.

Input ranges are:

Voltage	Current
$+/-10 \mathrm{~V}$	
$0 \ldots 10 \mathrm{~V}$	
$1 \ldots 5 \mathrm{~V}$	$4 \ldots 20 \mathrm{~mA}$
$0 \ldots 5 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
$2 \ldots 10 \mathrm{~V}$	
$+/-5 \mathrm{~V}$	$+/-20 \mathrm{~mA}$

ADU 210 Isolated Analog Input Module Physical Characteristics

Illustration

The ADU 210 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided.

A front view with ADU 210 label is provided below.

LEDs
 The ADU 210 has two green LEDs.

LED\#	LED Name	Function
1	Power (U)	Pertains to the 24 VDC: ON = Power supply is available OFF = Power supply is NOT available.
12	Ready	Pertains to the processor operation: ON = Processor operating between the ADU 210 and the PLC without fault OFF = Fault in processor operation

Simplified Schematic

A simplified schematic for the ADU 210 is provided below.

Installing the ADU 210 Isolated Analog Input Module

Introduction The following procedures are necessary when installing the ADU 210:

- Make connections and assign input addresses.
- Map the I/O module as $4-3 x$ input registers.
- Identify the overall mode of operation and type of input.

Make
Connections and
Assign Input Addresses

The selection of current (I) or voltage (U) input is determined primarily on the connections and the panel software. However, for the 20 mA current range you MUST use the jumpers as noted. Mixed ranges are allowed among the four channels.

The following table outlines jumper placement for a 20 mA current range.

20mA Channel Selection	Jumper Placement
Input 1	3 and 4
Input 2	7 and 8
Input 3	14 and 15
Input 4	18 and 19

Note: The ADU 210 ships with the four jumpers installed.

Wiring Diagram The following illustration is an ADU 210 wiring diagram.

ADU 210 Isolated Analog Input Module Operation

Introduction The ADU 210 is a four-channel analog input module. Its field connector is wired depending on the type of input to be measured, either voltage or current. Any of the four inputs can be either voltage or current, and any combination of the four may be used if levels are within the programmed range for the channel.
 The module can operate in one of several modes, and the input channel ranges are individually selectable. The mode and ranges are set via the panel software.
 Channel input data is updated every 270 mS . When power is first applied to the module, its inputs are inactive.

I/O Map

The ADU 210 requires $4-3 x$ input registers. These four registers contain data representative of the individual channel input values.

I/O Map Registers	Data
$3 x$	Input \#1 data
$3 x+1$	Input \#2 data
$3 x+2$	Input \#3 data
$3 x+3$	Input \#4 data

Note: Inputs that are NOT used MUST be set to inactive. This avoids error messages and reduces the conversion time.

Error Detections and Limits

After system start-up a measured value remains 0 , until the ADU 210 is addressed. Next, the ADU 210 displays a parameter error (-32768) until the value is changed by selecting a valid range. Then the valid range is displayed. Changing the measuring range displays a parameter error (-32 768) in the following cycle, until the valid range is shown after subsequent cycles. It may take up to 300 mS maximum.

Input voltages (currents) of up to -1.6% of the rated value in unipolar mode and limiting value 0 result in a digital value (0) without causing an error. When input voltage (currents) fall below this limit an error results and a measured value (-32 767) is displayed.

Negative input voltage (current) in unipolar mode and limiting value -1.6% produce an appropriate digital value (up to -512) without causing an error - up to a input voltage of -1.6% of the rated value. When the measured value falls below this limit an error results and a measured value (-32767) is displayed.
When measuring ranges with a 20% offset (live-zero) the error limit for value measure underflow is about 10% of the rated value.

When errors occur simultaneously in several inputs the error with the lowest input number is displayed until debugged. Next, the error with the next highest input number is displayed and so on.
When an input error occurs the transferred measured value of that input is set to the defined constants of:

Transferred Measured Values after an Error Detection are listed in the following table.

Measured Values	Descriptions
-32768	Inactive input (invalid measuring range)
+32767	Measuring range overflow
-32767	Measuring range underflow

Conversions The following tables detail the various voltage and current conversions for the ADU 210 module.

Note: Brackets denote range with limiting value -1.6%. No brackets denotes range with limiting value 0 .

The conversion values of voltage inputs are listed in the following table.

Analog value $0 \text {... } 5 \text { V }$	Analog value $0 \text {... 10V }$	Analog value $1 \text {... } 5 \text { V }$	Analog value $2 \ldots 10 \text { V }$	Analog value +/-5 V	Analog value +/-10 V	Decimal value	Notes
<-0.080	<-0.16	<+0.52	<+1.04	<-5.12	<-10.24	-32 767	underflow error
				$\begin{array}{\|l} \hline-5.119 \ldots \\ -5.00 \end{array}$	$\begin{array}{\|l\|} \hline-10.239 \ldots \\ -10.00 \end{array}$	$\begin{aligned} & -32766 \ldots \\ & -32001 \end{aligned}$	overload range
$\begin{aligned} & -0.08 \ldots \\ & -0.00 \end{aligned}$	$\begin{aligned} & -0.16 \ldots \\ & -0.00 \end{aligned}$	$\begin{aligned} & +0.52 \ldots \\ & +0.936 \ldots \\ & +0.99 \end{aligned}$	$\begin{aligned} & +1.04 \ldots \\ & +1.87 \ldots \\ & +1.99 \end{aligned}$			$\begin{aligned} & 0(-3840) \\ & 0(-512) \\ & 0(-1) \end{aligned}$	overload range
				-5.00	-10.00	-32 000	linear
				-2.50	-5.00	-16 000	linear
				-0.50	-1.00	-3 200	linear
				-0.25	-0.50	-1 600	linear
				-0.05	-0.10	-320	linear
				-0.005	-0.01	-32	linear
				-0.0025	-0.005	-16	linear
0	0	1	2	0	0	0	linear
0.0025	0.005	1.002	2.004	+0.0025	+0.005	+16	linear
0.005	0.01	1.004	2.008	+0.005	+0.01	+32	linear
0.05	0.10	1.04	2.08	+0.05	+0.10	+320	linear
0.25	0.50	1.20	2.40	+0.25	+0.50	+1600	linear
0.50	1.00	1.40	2.80	+0.50	+1.00	+3 200	linear
2.50	5.00	3.00	6.00	+2.50	+5.00	+16000	linear
5.00	10.00	5.00	10.00	+5.00	+10.00	+32 000	rated value
$\begin{array}{\|l\|} \hline 5.000 \ldots \\ 5.119 \end{array}$	$\begin{aligned} & \hline 10.000 \ldots \\ & 10.239 \end{aligned}$	$\begin{aligned} & 5.00 \ldots \\ & 5.09 \end{aligned}$	$\begin{aligned} & 10.00 \ldots \\ & 10.19 \end{aligned}$	$\begin{aligned} & +5.000 . . \\ & +5.119 \end{aligned}$	$\begin{aligned} & +10.00 \ldots \\ & +10.239 \end{aligned}$	$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$	overload range
>5.12	>10.24	>5.09	>10.19	>+5.20	>+10.24	>+32 767	overflow error

The conversion values of current inputs are listed in the following table.

Analog value 0 ... 20 mA	Analog value 4 ... 20 mA	Analog value +/-20 mA	Decimal value	Notes
<-0.32	<+2.08	<-20.479	-32 767	underflow error
		$\begin{aligned} & -20.478 \ldots \\ & -20.000 \end{aligned}$	$\begin{aligned} & -32766 \ldots \\ & -32001 \end{aligned}$	overload range
$\begin{aligned} & \hline-0.32 \ldots \\ & -0.00 \end{aligned}$	$\begin{aligned} & +2.08 \ldots \\ & +3.74 \ldots \\ & +3.99 \end{aligned}$		$\begin{aligned} & 0(-3840) \\ & 0(-512) \\ & 0(-1) \end{aligned}$	overload range
		-20.00	-32 000	linear
		-10.00	-16 000	linear
		-2.00	-3 200	linear
		-1.00	-1600	linear
		-0.20	-320	linear
		-0.02	-32	linear
		-0.01	-16	linear
0	+4	0	0	linear
+0.01	+4.008	+0.01	+16	linear
+0.02	+4.016	+0.02	+32	linear
+0.20	+4.16	+0.20	+320	linear
+1.00	+4.80	+1.00	+1600	linear
+2.00	+5.60	+2.00	+3 200	linear
+10.00	+12.00	+10.00	+16000	linear
+20.00	+20.00	+20.00	+32 000	rated value
$\begin{aligned} & +20.000 \ldots \\ & +20.478 \end{aligned}$	$\begin{aligned} & +20.00 \ldots \\ & +20.38 \end{aligned}$	$\begin{aligned} & +20.000 \ldots \\ & +20.478 \end{aligned}$	$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$	overload range
>+20.479	>+20.38	>+20.479	>+32 767	overflow error

ADU 210 Isolated Analog Input Module Specifications

Table of Specifications

The following table contains a list of specifications for the ADU 210 module.

Module Topology	Number of channels	4
	Data Format	Unipolar and Bipolar as voltage or current inputs
	Isolation channel to channel	300 Vdc maximum
	Isolation channel to bus	500 Vac maximum
Power Supply	Internal Source (from I/O bus)	$5 \mathrm{VIO} ; 90 \mathrm{~mA}$ maximum, 40mA typical
	External	$24 \mathrm{Vdc} ; 120 \mathrm{~mA}$ maximum, 60 mA typical
	Power Dissipation	3Ω maximum, 2Ω typical
I/O Map	Register 3x/4x	4 in/0 out
Voltage Inputs	Linear Measuring Range	Unipolar: $1 \ldots 5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$ Bipolar: +/-5V, +/-10V,
	Input Impedance	$\geq 1 \mathrm{M}$ ohms
	Resolution	Brief Product Description, p. 76
	Absolute accuracy error @ 25 degrees C	Maximum 0.1% of full scale
	Absolute accuracy error @ 60 degrees C	Maximum 0.25% of full scale
	Typical accuracy error	≤ 0.5 of above maximum error
	Maximum overvoltage	$+/-30 \mathrm{~V}$ static (1 input for each module) +/-50 V dynamic for max. 100 ms
	Conversion values	ADU 210 Isolated Analog Input Module Operation, p. 81
Current Inputs	Linear Measuring Range	$+/-20 \mathrm{~mA}(+/-5 \mathrm{~V})$, 0 ... $20 \mathrm{~mA}(0 . . .5 \mathrm{~V})$, 4 ... $20 \mathrm{~mA}(1 . . .5 \mathrm{~V})$
	Input Impedance	250 ohms
	Resolution	Brief Product Description, p. 76
	Absolute accuracy error @ 25 degrees C	Maximum 0.1\% of full scale
	Absolute accuracy error @ 60 degrees C	Maximum 0.25% of full scale
	Typical accuracy error	0.5 of above maximum error

	Critical values	48 mA , maximum overvoltage from 12 V
	Conversion values	ADU 210 Isolated Analog Input Module Operation, p. 81
Dynamic Characteristics of Inputs	Conversion time for all inputs	270 mS maximum
	Time constant for HF suppression	0.4 mS typical
	Interference voltage suppression (main suppression) for $\mathrm{f}=\mathrm{nx} 50$ or 60 Hz	$\mathrm{n}=1,2 \ldots$
	Common-mode rejection	$\geq 105 \mathrm{~dB}$
Processor/ Memory	Processor Type	Intel 80C31 (8-bit)
	Memory	32 kByte EPROM for firmware
Physical Characteristics	Format	1 slot
	Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm} \\ & 1.6 \times 5.6 \times 4.5 \mathrm{in} \end{aligned}$
	Weight	$320 \mathrm{~g}, 0.710 \mathrm{lb}$.
	Wire Size	1-14 AWG, 2-20 AWG
Environmental Characteristics	Operating Temperature	0 ... 60 degrees C
	Agency Approvals	VDE 0160; UL 508; CSA 22.2 No.142; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, p. 857) Standards

Overview of the ADU 211/212 Universal Analog Input Module

6

At a Glance

Purpose

What's in this Chapter?

The purpose of this chapter is to describe the ADU 211/212 universal analog input module.

This chapter contains the following topics:

Topic	Page
What is the ADU 211/212 Universal Analog Input Module?	88
ADU 211/212 Universal Analog Input Module "J" Thermocouple Quick Start	89
ADU 211/212 Universal Analog Input Module Inputs	90
ADU 211/212 Universal Analog Input Module Installation	90
ADU 211/212 Universal Analog Input Module Switch Settings	91
ADU 211/212 Universal Analog Input Module Field Wiring	95
ADU 211/212 Universal Analog Input Module Field Wiring Examples	98
ADU 211/212 Universal Analog Input Module Application Notes	105
ADU 211/212 Universal Analog Input Module Configuration	109
ADU 211/212 Universal Analog Input Module Output Registers	110
ADU 211/212 Universal Analog Input Module Input Registers	118
Sequentially Reading ADU 211/212 Universal Analog Input Module Channel	121
Data	
ADU 211/212 Universal Analog Input Module Troubleshooting	128
ADU 211/212 Universal Analog Input Module Specifications	131

What is the ADU 211/212 Universal Analog Input Module?

Brief Product Description

> Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ $211 / 214 / 216$, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft. Refer to Installing the Loadables for A120 Series I/O Modules, p. 869

The ADU 211/212 Universal Analog Input Module is a highly versatile module that digitizes up to eight analog inputs into a Modicon Compact 984 or Micro PLC (programmable logic controller). The module accepts thermocouple, RTD (resistance temperature device), voltage, and current loop inputs, and (through automatic channel sequencing or ladder logic) provides these inputs to the PLC using only three 30XXX registers. Commands to the module are processed through three 40XXX registers.

A CAUTION
Note difference between ADU 211 and ADU 212.
The difference between the ADU 211 and the ADU 212 is how they are powered.
The ADU 211 requires a external 24 Vdc power supply and draws less than 1 mA
from the internal +5 Vdc . In contrast, the ADU 212 only draws power from the
internal $+5 \mathrm{Vdc}(450 \mathrm{~mA}$ typical, 600 mA maximum) and does not require an
external power supply.

Failure to follow this instruction can result in injury or equipment damage.

Note: For application specific concerns refer to ADU 211/212 Universal Analog Input Module Application Notes, p. 105

ADU 211/212 Universal Analog Input Module "J" Thermocouple Quick Start

Introduction This section is provided as a reference only for users who are familiar with the ADU

 211/212 module. Until you have become completely familiar with the ADU 211/212 module, do not try to follow these steps.Note: For application specific concerns, refer to ADU 211/212 Universal Analog Input Module Application Notes, p. 105

Procedure for "J" Thermocouple Quick Start

The following table describes the procedure for "J" Thermocouple Quick Start

Step	Action
1	Ensure that DIP switch poles 1, 3, and 9 (both top and bottom DIP switches) are turned ON (closed), while the others are turned OFF (open). This step configures the module for thermocouple inputs.
2	Attach a "J"-type thermocouple to the field wiring terminal block: connect the thermocouple white wire (+) to Terminal 2 and the red wire (-) to Terminal 3.
3	Install the ADU 211/212 in the rack. +24 VDC power and common need to be connected on the ADU 211.
4	I/O map the module slot as 30001-30003 and 40001-40003 BIN.
5	With the controller in RUN mode, in the panel software reference screen, configure the Control Words as follows: - 40001 = 1660 HEX (degrees F display of "J" Thermocouple) - 40002 = 0F6A HEX (internal cold junction compensation, 100 ms integration time and Floating Point data format)
6	Display 30001 in Floating Point format and 30003 hex. The Registers should appear as: - 30001 = Room temperature in degrees F - 30003 = 8000 HEX, indicating valid data on Channel 1

ADU 211/212 Universal Analog Input Module Inputs

Introduction	Built into the module's firmware are automatic calibration, linearization of thermocouple and RTD inputs, and internal diagnostic tests.
Channels	The module provides two groups of four isolated input channels. Each group can be configured independently for: - 100 ohms Platinum RTDs, 385 or 392 alpha - Type J, K, T, E, R, S, or B thermocouples (ungrounded type) - +/-0.050, 0.5, 2, 5, or 10 VDC inputs - 4-20 or +/-20 mA current loops
Formats	The module can provide data to the PLC in these formats: - 12-bit (0 to 4095) - signed 15 -bit (-32768 to +32767) - unsigned 16-bit (0 to 65535) - IEEE 754 floating point

ADU 211/212 Universal Analog Input Module Installation

Before You	Before installing the ADU 211/212 module, you should:
Install the	- Set the DIP switches to correspond to your application.
Module	- Field wire the module's terminal block for your application.

[^0]
ADU 211/212 Universal Analog Input Module Switch Settings

Introduction Before installing the ADU 211/212 module, you should:

- Set the DIP switches to correspond to your application.
- Field wire the module's terminal block for your application.

Setting the DIP Switches

Prepare the ADU 211/212 for operation by setting the DIP switches on the top and bottom of the module. In general, the switches on the top of the module configure Group 1, and the switches on the bottom of the module configure Group 2. See the following illustrations and tables for DIP switch locations and settings.

A top view of the module -- the Group 1 DIP switch location -- is provided below.

A bottom view of the module -- the Group 2 DIP switch location -- is provided below.

DIP Switch Settings

DIP switch settings for Groups 1 and 2 are listed in the following table.

For this type of application...		Turn these DIP switch poles ON $(O N=$ closed $)$
Thermocouple	with internal CJC	1,3 , and 9 only
	with external CJC*	1,9 and see table below
Voltage	$+/-0.05,0.5,2.0$, or 5.0 VDC	1,3, and 9 only
	$+/-10.0$ VDC	1 and 3 only
Current		1,3, and 5 through $9^{\star \star}$
RTD		2,4, and 9 only

* You need external CJC (cold junction compensation) only if the ADU 211 will be operating under extreme temperatures.
** If you want to use your own current shunts (instead of the internal shunts provided), see the table provided for that purpose later in this section.

DIP switch settings for external CJC* are listed in the following table.

For external CJC on this Group...	Turn this DIP switch pole ON... ON = closed	And turn these DIP switch poles OFF OFF = open
Group 1	4 on bottom	3 and 4 on top, and 3 on bottom
Group 2	4 on top	3 on top, and 3 and 4 on bottom
* If external CJC is needed, these settings for DIP switch poles 3 and 4 (only) take		
precedence. This is the only time when DIP switch settings for one group affect the other		

Note: Only one Group may be configured with external Cold Junction Compensation (CJC). If external CJC is needed with both groups (e.g., when thermocouples are used with both groups), configure Group 1 for external CJC. The module will use the external CJC value from Group1 for both groups of thermocouples. See the Field Wiring examples for more information.

Set the DIP switches as follows to disable the internal 250 ohm shunts.

	To disable the shunt on this channel...	Turn this DIP switch pole OFF. OFF = open
Group 1 DIP switch:	1	8
	2	7
	3	6
	4	5
Group 2 DIP switch:	5	8
	6	7
	7	6
	8	5

Note: For current applications, you should enable the internal 250 ohm current shunts, unless you want to connect your own.

ADU 211/212 Universal Analog Input Module Field Wiring

Introduction Before installing the ADU 211/212 module, you should:

- Set the DIP switches to correspond to your application.
- Field wire the module's terminal block for your application.

Field Wiring

A. WRNING
Possible Injury Hazard
When in hazardous location, turn off power before replacing or wiring modules.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

Power, input, and output (I/O) wiring must be in accordance with Class 1, Division 2, wiring methods [Article 501-4 (b) of the National Electrical Code, NFPA 70] and accordance with the authority having jurisdiction.

For field wiring, use shielded, twisted-pair cable (such as Belden 9418 for voltage and current applications), and ground each cable's shield wire at one end only. At the opposite end of each cable, tape the exposed shield wire to insulate it from electrical contact. A good shield wire ground is a rack assembly mounting bolt or stud.

When wiring the terminal block, keep the length of the unshielded hookup wires as short as possible. Use 60/75 copper (Cu) for the power connections and $4.5 \mathrm{in}-\mathrm{lb}$ of torque for the set screws. See the table below for the terminal block assignments.

Note: The ADU 211 requires power from an external 24 Vdc source to operate. The ADU 212 draws power from the A120 rack's +5 Vdc internal supply. Ensure that 450 mA of rack power is available for the ADU 212.

Note: The ADU 212 draws power from the A120 rack's +5 Vdc internal supply. Ensure that 450 mA of rack power is available for the ADU 212.

Note: For application specific concerns refer to the ADU 211/212 Universal Analog Input Module Application Notes, p. 105

For an unused channel, you should short the unused channel's terminals (that is, run a wire from the channel's + terminal to the channel's - terminal).

CAUTION
Connection Hazard
If during installation you hear a high pitched audible sound, ensure that power and
ground are properly wired.
Failure to follow this instruction can result in injury or equipment damage.

When configured for RTD operation, only one two-wire, three-wire, or four-wire RTD is allowed per group. Connect the sense lines to Channel 1 (for Group 1) or Channel 5 (for Group 2) only. Leave the other channels unconnected.
For a four-wire RTD (the most accurate), the excitation line resistance should never exceed 40 ohms. For a three-wire RTD (the next most accurate), the excitation line resistance should never exceed 20 ohms. For a two-wire RTD (the least accurate), the excitation line resistance should be kept as low as possible.

Note: For thermocouple wiring, the U.S. convention is to use red wire for negative, so when connecting thermocouples, always check the manufacturer's color-coding tables.

After wiring the module, route all signal wires as far as possible from potential sources of electrical noise, such as motors, transformers, contactors, etc., (especially ac devices). As a general rule, allow 15.2 cm (6 in) of separation for every 120 V of power. Signal wires must never share the same conduit with ac wiring. Also, when you must route signal wires past ac wiring, do so at right angles.

The following table lists the ADU 211/212 terminal block assignments.

Group	Terminal	Channel	Function
One*	1		+24 Vdc External Power (required for the ADU 211): No connection (for the ADU 212)
	2	1	TC, Voltage, Cur rent, or RTD Sense +
	3		Channel 1 Common or RTD Sense -
	4	2	TC, Voltage, or Current +
	5		Channel 2 Common
	6	4	TC, Voltage, or Current +
	7		Channel 3 Common
	8	4	TC, Voltage, or Current +
	9		Channel 4 Common
	10		Open TC circuit detection or RTD 200 micro A Ex citation +
	11		External CJC Thermistor or RTD Excitation -
Two*	12		24 VDC Common required for the ADU 211; no connection for the ADU 212
	13	5	TC, Voltage, Cur rent, or RTD Sense +
	14		Channel 5 Common or RTD Sense -
	15	6	TC, Voltage, or Current +
	16		Channel 6 Common
	17	7	TC, Voltage, or Current +
	18		Channel 7 Common
	19	8	TC, Voltage, or Current +
	20		Channel 8 Common
	21		Open TC circuit detection or RTD 200 micro A Ex citation +
	22		External CJC Thermistor or RTD Excitation -
* Signal types may not be mixed within a group.			

ADU 211/212 The ADU 211/212 module has two front-panel LEDs (light-emitting diodes). When Universal Analog Input Module LEDs ON, the Amber LED signifies that the module is powered-up and has passed powerup diagnostics, and the Green LED signifies that the module has established communication with the PLC and is ready to run. More information on the LEDs is provided in ADU 211/212 Universal Analog Input Module Troubleshooting, p. 128

ADU 211/212 Universal Analog Input Module Field Wiring Examples

Cautions and

Warnings	CAUTION
Unit Failure Hazard	
Do not run PLC without power applied to the ADU 211.	
Failure to follow this instruction can result in injury or equipment damage.	

| WARNING |
| :--- | :--- |
| Unit Wear Hazard |
| It is not recommended to leave unpowered modules in the rack. |
| Failure to follow this instruction can result in death, serious injury, or |
| equipment damage. |

Voltage and Thermocouple Combination

The following figure shows Group 1 configured for voltage and Group 2 configured for thermocouple inputs.

NOTE: To detect an open thermocouple (TC) circuit, connect Terminal 10 (if Group 1) or Terminal 21 (if Group 2) to any TC+ channel. To detect individual open circuits, add $22-47 \mathrm{M}$ - to each + side.

Two Groups of Thermocouples with External CJC

The following illustration shows the module wired for thermocouples on both groups and external Cold Junction Compensation (CJC).

NOTE: To detect an individual open thermocouple (TC) circuit, connect Terminal 10 (if Group 1) or Terminal 21 (if Group 2) to any TC + channel. To detect individual open circuits, add 22-47 M• to each + side.

All thermocouples require CJC to work correctly. (RTDs do not require CJC.) In the ADU 211/212, CJC can be performed by the module internally. However, if the ADU $211 / 212$ will be operating under extreme temperatures, or if remote sensing is needed, an external thermistor (a Betatherm 10K3A or equivalent) can be connected as shown to improve CJC accuracy. This external thermistor provides CJC for both Groups 1 and 2.
When using external CJC with two groups of thermocouples, you should set bits 11 and 12 of Control Word 40XXX+1 to 1 (see ADU 211/212 Universal Analog Input Module Switch Settings for more information on proper CJC configuration).

Note: The ADU 211/212 is a differential analog input module and, for most applications, this is the best operation mode for reasons of signal accuracy and noise reduction, but in some cases it maybe desirable to have single ended (common ground) operation for either one or both groups of channels to share a common ground.

To set up the module to a single-ended mode for a group, voltage or current:

- Leave all of the signal connections for the group open (TB 1 ... 3, 5, 7 and 9 for Group 1 or TB 1 ... 14, 16, 18 and 20 for Group 2).
- Open DIP switch 1 for the group (this floats the channel analog grounds).
- Close DIP switch 4 for the group (this places an analog module ground at TB 1 ... 11 or TB 1 ... 22).
- Connect the group signal common ground to TB 1 ... 11 for group 1 or TB 1 ... 22 for Group 2.
It is recommended that the entire module be utilized in either differential or single ended mode (common ground mode).

Three-wire RTD and
Thermocouple Combination

The following illustration shows a three-wire RTD configuration for Group 1 and a thermocouple configuration for Group 2.

In this illustration, the RTD excitation current is sourced from Terminal 11 (Terminal 22 is used if Group 2 is configured for RTDs). For thermocouple configurations, the module can detect open thermocouple circuits with the addition of external pull-up resistors.

Two- and Threewire Combination

The following illustration shows the ADU 211/212 wired for two-wire RTD operation in Group 1 and three-wire RTD operation in Group 2.

Current and Four-wire RTD Combination

The following illustration shows the ADU 211/212 wired for current in Group 1 and four-wire RTD operation in Group 2.

ADU 211/212 Universal Analog Input Module Application Notes

Introduction This section contains application notes and usage recommendations in the following categories:

- General
- Current and Voltage Ranges
- RTD Ranges
- Thermocouple Ranges

General

- Power the ADU 211/212 module from the same 24 Vdc power supply as the PLC, the unit has an approximate 2 times nominal (4 VA maximum) inrush current for approximately 10 ms during power up.
- Do not leave the module unpowered in the PLC rack.
- Ensure the SVI.DAT DX loadable is installed and is the latest revision.
- Do not install or remove the module when the rack or module is powered.
- Use the on line help file for reference in the configuration screen by using <ALT H>.
- Ensure correct units of measure are selected for temperature, e.g. degrees C or degrees F. This configures all eight channels.
- Use the highest integration setting possible for your application, this ensures the most stable and accurate readings.
The following table lists integration time settings.

For operation at:	$\mathbf{5 0 ~ H z}$	$\mathbf{6 0 ~ H z}$
Set integration time to:	40 ms	33.3 ms
	60 ms	50 ms
	100 ms	100 ms
	200 ms	200 ms

NOTE: Integration rates of less than 33.3 ms are not recommended.

- An asterisk in the rack ID indicates that the module is not correctly identified to the PLC; check DX loadable and module power.
- A flashing green RUN LED means the module has not established communications with the PLC.
- The signal inputs are optical/magnetic isolated from rack 500 V 25 micro A maximum at 60 Hz .
- Channel to channel isolation is $+/-30 \mathrm{~V}$ at 68 dB typical.
- For unused voltage, current or thermocouple channels, short the positive to negative terminals. For unused RTD channels, short the sense negative to sense positive terminals.
- Field wiring blocks are not interchangeable due to power and ground, employ keys.
- Observe good field wiring shield termination, typically only at the module end.
- In the temperature mode only, allow a warmup time of up to 10 minutes. During warmup temperature readings from 0 to 10 degrees above actual thermocouple readings may be seen.

Current and Voltage Ranges

Resistance Temperature Detector (RTD) Range

- The ADU 211/212 module normally operates in a pseudo-differential mode. However, for some voltage sensing applications it may be preferred to configure for common ground. To set this mode of operation:
- open DIP SW1 for the group (this floats differential ground)
- close DIP SW4 for the group (this supplies a ground to TB1-11 for group 1 or TB1-22 for group 2)
- connect all signal commons (grounds) to TB1-11 for group 1 or to TB1-22 for group 2
- As protection to the ADU 21X the module uses an active signal clamp that engages when signal levels are 3-12.5 Vdc or . +12.5 Vdc . Resistance between input terminals will decrease as voltage levels increase in magnitude.
- To reduce the effects of noise on field wiring, external capacitance may be added to the terminal block. A good capacitor for starters would be a 0.1 micro F 50 ... 100 V disc capacitor.
- Use high quality 100 percent shielded twisted-pair field wiring, Belden 8760 or equal.
- Ensure that the format type is correctly selected, e.g. 2/4 or 3 wire mode.
- Ensure the total excitation lead resistance is under 10 ohms, in 3 and 4 wire modes.
- Use high quality 100 percent shielded field wiring.
- The 250 ohms internal current shut resistors maybe used to test or simulate a 400 degrees C 392 alpha.
- RTD excitation current is -200 micro A typical, be aware of RTD self heating.
- The RTD and field wiring should be isolated and floating from system grounds, etc.

Thermocouple Range

- Ensure the thermocouple type is correctly selected and that CJC is enabled.
- Verify thermocouple color coding and terminal block connections, because some thermocouples use red for the negative lead.
- The 250 ohms internal current shut resistors maybe used to simulate a short thermocouple thus yielding CJC/ambient rack temperature.
- Use isolated and shielded thermocouples whenever possible. The shield maybe connected to the thermocouples negative lead.
- Only use thermocouple extension grade wire because other choices may introduce additional thermocouple junctions.
- When possible, use a suitable thermocouple bead forming machine to weld the thermocouple wire.
- Total system accuracy = Thermocouple A/D conversion accuracy + Cold Junction Compensation (CJC) accuracy + thermocouple accuracy (available from the thermocouple manufacturer). The thermocouple A/D conversion accuracy and CJC accuracy specifications are in the last section of this chapter.
Example - For a Type J thermocouple with +/- 0.5 C accuracy, the total system accuracy with internal CJC is:
A/D conversion accuracy (Type J) $\quad+/-1.5$ degrees C (+/-2.7 degrees F)
+ CJC accuracy $\quad+/-1.7$ degrees C (+/-3.0 degrees F)
+ Thermocouple accuracy $\quad+/-0.5$ degrees C (+/-0.9 degrees F)
Total system accuracy $+/-3.7$ degrees C (+/-6.6 degrees F)
- For more than one thermocouple open detection circuit, external 22 M ohms ... 47 M ohms resistors must be used.
- Open thermocouple wiring without open circuit detection resistors will read large over-range or under-range values due to the high input impedance of the ADU 21X. Open thermocouple wiring with open circuit detection resistors will yield a high positive reading.
- The ADU $211 / 212$ requires a warm-up period of about 10 minutes for readings to stabilize. Extreme variations in ambient temperature over short time causes module readings to drift as much as 10 degrees C .
- Ensure correct units are selected for modes of temperature, e.g. degrees C or degrees F.
- Do not select different temperature units for each channel or group, all channels must be either degrees C or degrees F.

ADU 211/212 Universal Analog Input Module Configuration

Introduction The ADU 211/212 uses three $4 x$ output registers and three $3 x$ input registers, $1 / O$ mapped as binary (BIN) data.

You can call up the built-in help screens at any time by highlighting "ADU 211" and then pressing <ALT><H> for more information about the module. Both the ADU 211 and ADU 212 are I/O mapped as an "ADU 211" module.

Note: For application-specific concerns refer to the ADU 211/212 Universal Analog Input Module Application Notes, p. 105

ADU 211/212 Universal Analog Input Module Output Registers

Introduction

Control Word

The output registers control how the ADU 211/212 operates.
The output registers for the ADU 211/212 are:

Register	Function
4 x	Control Word
$4 \mathrm{x}+1$	Control Word
$4 \mathrm{x}+2$	Reserved for Future Use (do not use in user logic)

Register 4 x is the control word. It is used to:

- Select the type of field device to be used in each of the terminal block groups.
- Manually set the input channel to be displayed or enable auto-sequencing through all channels at a fixed interval.
- Select either Fahrenheit or Centigrade display.
- Enable the built-in test functions.

Control Word 4 x is defined in the illustrations that follow.
The following figure illustrates Control Word $4 x$: Bits 1 ... 4 and 13 ... 16 .

Channel Select

 (Bits 1 ... 3)These bits manually select the channel to be displayed in input registers $3 x$ and $3 x+1$. If auto-sequence is enabled (bit $4=1$), it overrides these bit settings. When the auto-sequence bit is released (bit $4=0$), the module returns to manual operation.

Note: For RTD applications, use only the data provided by Channel 1 (for Group 1) or Channel 5 (for Group 2); the module will use the other channels for its own calculations.

This bit instructs the ADU 211/212 to automatically scan the input channels and present the data to the PLC at fixed intervals. When enabled (1), the module controls the active channel bits (bits $1 \ldots 3$) of input register $3 x+2$.

Temperature Unit Display (Bit 13)

If this bit is turned OFF ($=0$), TC and RTD inputs will be displayed in degrees Centigrade. If this bit is turned $\mathrm{ON}(=1)$, temperature data will be displayed in degrees Fahrenheit. Temperature data can be displayed in any data format, but it can only be displayed in degrees C or degrees F when in IEEE 754 floating point mode.

The following illustration shows the control word 4x: bits 5 ... 8.

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

GROUP 1 Input Type and Range

The following illustration shows the control word 40XXX: bits 9 ... 12.

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

*4-20mA/+/-20mA $=0 \quad 0 \quad 0 \quad 0$
$+/-0.05 \mathrm{~V}=0 \quad 0 \quad 0 \quad 1$ $+/-0.50 \mathrm{~V}=0 \quad 0 \quad 1 \quad 0$ $+/-2.0 \mathrm{~V}=0 \quad 0 \quad 1 \quad 1$ $+/-5.0 \mathrm{~V}=0 \quad 1 \quad 0 \quad 0$ $+/-10.0 \mathrm{~V}=0 \quad 1 \quad 0 \quad 1$
Type J = $0 \begin{array}{llll}1 & 1 & 0\end{array}$
Type K = $0 \begin{array}{llll}1 & 1 & 1\end{array}$
Type T = $1 \quad 0 \quad 0 \quad 0$
Type $E=1 \quad 0 \quad 0 \quad 1$
Type R $=1 \quad 0 \quad 1 \quad 0$
Type $S=1 \quad 0 \quad 1 \quad 1$
Type B = $1 \quad 1 \quad 0 \quad 0$
Alpha 385 RTD $=1 \quad 1 \quad 0 \quad 1$ Alpha 392 RTD $=1110$
*For 12-bit operation, the range is 4-20 mA. For 16-bit and IEEE 754 Floating Point, the range is + /- 20 mA .

GROUP 2 Input Type and Range

Input Type and Range Select
(Bits 5 ... 8, Group 1; Bits 9 ... 12, Group 2)

Register $4 \mathrm{x}+1$ is a second control word, used to select:

- Data format
- Integration time
- CJC type
- RTD type

The following figure illustrates the control word 40XXX + 1 - Bits 1 ... 4 and 11 ... 16.

GROUP 2 Data Format

Data Format (Bits
1 and 2, Group 1; Bits 3 and 4, Group 2)

The data format you should select depends on your application. The available data formats are shown in the illustration(s) that follow.

All thermocouples require Cold Junction Compensation (CJC) to work correctly. The only time you should select no CJC for a group is when you want to apply the CJC value of one group to the other, as explained in Section 6.3.3 for two groups of thermocouples with external CJC.

RTD Type (Bit 14) When configured for RTD operation, only one two-wire, three-wire, or four-wire RTD is allowed per group.
The following illustration shows the control word $4 x+1$ - Bits $5 \ldots 10$.

Integration Time (Bits 5 ... 7, Group 1; Bits 8 ... 10, Group2)

Shorter integration times should be used in areas with low electrical noise, and longer integration times should be used in areas with high electrical noise.
Typically, 33.3 ms (minimum) is used with 60 Hz noise, and 40.0 ms (minimum) is used with 50 Hz noise.

A211/212 display mode ranges are listed in the following table.

Range	Display Modes			
	12-Bit	15/16-Bit	IEEE 754 Floating	Point (16-bit)
+/-50 mVDC	4095	32767	5.0 E-02 VDC	<- high value <- middle value <- low value
	2048	0	0	
	0	-32768	-5.0 E-02	
+/-500 mVDC	4095	32767	0.5 VDC	
	2048	0	0	
	0	-32768	-0.5	
+/-2000 mVDC	4095	32767	2.0 VDC	
	2048	0	0	
	0	-32768	-2.0	
+/-5000 mVDC	4095	32767	5.0 VDC	
	2048	0	0	
	0	-32768	-5.0	
+/-10,000 mVDC	4095	32767	10.0 VDC	
	2048	0	0	
	0	-32768	-10.0	
4 to 20 mA	4095	N/A	N/A	
	2048			
	0			
-20 to +20 mA	N/A	32767	+2.0 E-02 A	
		0	0	
		-32768	-2.0 E-02	
J Type	4095	65535	$\begin{aligned} & 7.60 \text { E02 de grees } \\ & \text { C } \end{aligned}$	1.400 E 03 de grees F
	2048	32768	3.80 E02	7.16 E02
	0	0	0	3.2 E01
K Type	4095	65535	1.000 E03 de grees C	1.832 E03 de grees F
	2048	32768	5.00 E02	9.32 E02
	0	0	0	3.2 E01

T Type	4095	65535	4.00 E02 de grees C	7.52 E02 de grees F
	2048	32768	1.50 E 02	3.02 E02
	0	0	-1.00 E02	-1.48 E02
E Type	4095	65535	1.000 E03 degrees C	1.832 E03 degrees F
	2048	32768	5.00 E02	9.32 E02
	0	0	0	3.2 E01
R Type	4095	65535	1.750 E03 degrees C	3.182 E03 degrees F
	2048	32768	1.125 E 03	2.057 E03
	0	0	5.00 E 02	9.32 E02
S Type	4095	65535	1.750 E03 degrees C	3.182 E03 degrees F
	2048	32768	1.125 E 03	2.057 E03
	0	0	5.00 E 02	9.32 E02
B Type	4095	65535	1.800 E03 degrees C	3.272 E03 degrees F
	2048	32768	11.150 E03	2.102 E03
	0	0	5.00 E 02	9.32 E 02
100 ohms RTD 385m	4095	65535	8.00 E02 de grees C	1.472 E03 degrees F
	2048	32768	3.00 E02	5.72 E02
	0	0	-2.00 E02	-3.28 E02
100 ohms RTD 392m	4095	65535	8.00 E02 de grees C	1.472 E03 degrees F
	2048	32768	3.00 E02	5.72 E02
	0	0	-2.00 E02	-3.28 E02

A WARNING

Extreme out-of-range voltage.

Operating the ADU 21X at an extreme out-of-range voltage (many times greater than the specified range) can permanently damage the module.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

ADU 211/212 Universal Analog Input Module Input Registers

Introduction The input registers provide channel and status information to the PLC: The input registers for the ADU 211/212 are:

Input Register	Function
3 x	Read Data, Channels 1-8, Integer or IEEE 754 (LowWord)*
$3 \mathrm{x}+1$	Read Data, Channels 1-8, IEEE 754 (High Word)
$3 \mathrm{x}+2$	Status Word
${ }^{*}$ Using IEEE 754 floating point notation requires two 3 x input registers (3x and $3 \mathrm{x}+1$).	

Status Word $3 \mathbf{x}+\quad$ This register is a module operating status word, used to:
2

- Inform the PLC which input channel is active
- Indicate range errors for each of the eight channels
- Monitor the auto-sequence mode
- Indicate module memory faults
- Indicate faults in module hardware

Status word $3 x+2$ is shown below:

Read Data Registers 3x and $3 x+1$

These registers display the data collected from the field source. Data from each channel may be displayed on demand (through ladder logic) or in auto-sequence mode by the ADU 211/212 module. See Sequentially Reading ADU 211/212 Universal Analog Input Module Channel Data, p. 121

Channel Range Error (Bits 4... 11)

These bits go $\mathrm{ON}(=1)$ if the associated channel experiences one of these conditions:

- A thermocouple input is open (only if a pull-up resistor is used) or over- or underrange
- an RTD input is over-range or has open excitation
- a 12-bit Current input is less than or equal to 3.6 mA or greater than $20 \mathrm{~mA}+2$ percent minimum
- a signed 15 -bit or IEEE 754 floating point Current input is less than -20 mA -2 percent minimum, or greater than $20 \mathrm{~mA}+2$ percent minimum
- a Voltage input is over- or under-range

An input is out-of-range if it exceeds the specified range by at least 2 percent.

Auto-Sequence Mode (Bit 12)

Module Memory Valid (Bit 13)

Module Error (Bit 14)

Channel Data
Ready (Bit 16)

The ADU 211/212 module can scan and display the data for each input channel automatically. Bit 12 monitors the auto-sequence mode: when $\mathrm{ON}(=1)$, the module is cycling through the eight input channels at a fixed interval. See Sequentially Reading ADU 211/212 Universal Analog Input Module Channel Data, p. 121 for more information.

This bit is used to inform the PLC that the module has detected a memory parity/ checksum error in its firmware. If this bit is OFF (0), all memory conditions are normal. If this bit is ever ON (1), the module's data or configuration is in question and you should initiate a self-test, power cycle the module, or replace the module.

This bit is turned ON (1) when a hardware failure is detected within the module (the amber LED may also be flashing). If this bit is ON (1), the module must be power cycled. If the bit does not clear (0) after a power cycle, the module should be replaced.

If $\mathrm{ON}(1)$, the data from the active channel (identified in bits $1 \ldots 3$) is ready to be read by the PLC. In Auto-Sequence Mode, the Channel Data Ready Bit cycles ON and OFF as new data values are written to the input registers. Any ladder logic acquiring data in the Auto-Sequence Mode should ensure that the Channel Data Ready Bit is set when data is read. See the following section for an application example.

Sequentially Reading ADU 211/212 Universal Analog Input Module Channel Data

Auto Sequence Mode

User-Defined
 Scan Mode

Setting the Control Word $4 x$ auto-sequence enable bit (bit 4) ON (1) causes the ADU 211/212 to scan all eight input channels at a fixed rate: every 240 msec (per channel) if the Group 1 integration time is $2,5,33.3$, or 40 msec (total cycle time is 2 seconds); 520 ms if the integration time is longer (total cycle time is 4 seconds).

The Channel Active bits (bits $1 \ldots 3$) in Status Word $3 x+2$ identify which channel the module is currently reading. Before accepting this data, you should verify that the Channel Data Ready Bit (bit 16) in Status Word $3 x+2$ is ON (1). A ladder logic example is shown below. Register(s) $3 x$ (and $3 x+1$ for IEEE 754 Floating Point) provide the actual data to the processor for the channel being scanned.

Note: For RTD applications, use only the data provided by Channel 1 (for Group 1) or Channel 5 (for Group 2); the module will use the other channels for its own calculations. Therefore, the Auto Sequence mode should not be used for RTD applications.

Some users may prefer to read input channel data at a faster or slower rate than is provided by Auto-Sequence. For example, you may want to scan Channels 1... 4 only, and read Channels 5 ... 8 less frequently or directly. The ladder logic shown in Figure 39 through Figure 45 is one way to do this.

Note: In user-defined scan mode, the auto-sequence enable bit (bit 4) in Control Word 4 x must be disabled (0).

Note: For application specific concerns refer to the ADU 211/212 Universal Analog Input Module Application Notes.

Ladder Login Screen \#1
 Ladder Logic Screen \#1 is shown below.

The first two rungs of ladder in Figure 39 can be used independently to sequence through the input channels. In this example, a T R move is shown. Note that the Source Table must be entered by the user; here, the desired configurations have been loaded into registers 40101. 40108. Each of these registers must contain the proper bit settings to select one of eight input channels on the ADU 21X, as well as to define the group range. In this example, the Type J thermocouple mode will be used.

Loading 0662 hex into Control Word 40001 selects channel 3 and configures Groups 1 and 2 for Type J thermocouple. The corresponding binary bit pattern is 0000-0110-0110-0010. The appropriate words from the source table are transferred into register 40110.
The contents of register 40110 are then block moved into Control Word 40001. This happens eight times, moving the eight predefined configuration words into Control Word 40001 of the ADU 211, effectively selecting and moving all eight input readings into holding registers.

Ladder Login Screen \#2

The remaining ladder shown (Figure 40 through Figure 45) illustrates a way to move validated data into independent holding registers. This lets you view and use all channel data at once. In this example, the processor continuously refreshes and loads validated data into the holding registers. In this fashion, ladder logic effectively de-multiplexes the ADU 211/212, making it appear as though each channel really had its own $3 x$ data register.

Ladder Logic Screen \#2 is shown below.

Register 30003 defines the ADU 211/212 Operating Status Word. Using the BLKM function to transfer this word into discrete outputs 00001... 00016 lets you monitor the Channel Active Bits and the Data Ready Bit. Properly decoding bits 00014... 00016 and the Data Ready bit 00001 lets you transfer register 30001 data (the data currently being read) into holding registers for each unique input channel. In this example, two consecutive words are moved for each channel, enabling you to display floating point data if desired. For all other data formats, you only need to move one word.

In Ladder Logic Screen \#3, the block move for Channel 1 uses three normally closed contacts, corresponding to the channel select bits (bits 00014... 00016). When these three bits are OFF (0), Channel 1 is the active channel. When the Data Ready bit is ON (1), the contents of registers 30001 and 30002 are moved into holding registers 40011 and 40012.

Ladder Login Screen \#3

Ladder Logic Screen \#3 is shown below.

Ladder Logic Screen \#4 is shown below.

Ladder Login Screen \#5

Ladder Logic Screen \#5 is shown below.

Ladder Login Ladder Logic Screen \#6 is shown below.
Screen \#6

Ladder Login

 Screen \#7Ladder Logic Screen \#7 is shown below.

Source and

 ResultsThe source table and results of de-multiplexing are shown below.

The source table is shown above for this example in Registers 40101... 40108. The results of the demultiplexing are shown in Registers 40011, 40013, 40015, 40017, 40019, 40021, 40023, and 40025 for input Channels 1... 8, respectively. You can move the data to any eight consecutive registers for integer data formats. If floating point data is desired, then two consecutive destination registers are required for each input.

In this example, the ADU 211/212 was configured for Type J thermocouples as defined by register 40001. The demultiplexed holding registers for the eight input channels are displaying temperature in degrees Fahrenheit using the floating point data format.

The ADU 21X is I/O mapped as: 30001-30003 input registers, 40001-40003 output registers, and binary. You can call up the built-in help screens at any time by highlighting "ADU 211 " and then pressing <ALT><H> for more information about the module.

ADU 211/212 Universal Analog Input Module Troubleshooting

Introduction This section provides instructions for detecting and correcting ADU 211/212 operating problems. The following topics are covered in this section:
- LEDs
- Invalid Data
- Testing the System
- Built-in Tests

Amber LEDs The amber LED on the front of the module provides module status information about the health of the module. A blinking amber LED indicates one of these faults:
 - Module watchdog fault
 - Module watchdog fault at startup
 - Module RAM failure at startup
 - Bus interface failure at startup
 - Module ROM failure
 - Module processor fault at startup
 - General module error
 If the amber LED begins blinking, try restarting the ADU 21X. If the blinking continues, call Technical Support at 1-800-468-5342.
 Green LEDs The green LED provides status information about the module's readiness. After the module is powered up, the green LED should begin blinking. If not, check the power connections.
 After the module has established communications with the PLC, the green LED should stop blinking and remain ON. If not, ensure that the PLC has been powered up.

Note: Do not run PLC without power applied to the module.

Note: For application specific concerns refer to the ADU 211/212 Universal Analog Input Module Application Notes, p. 105

Invalid Data If the module seems to be providing invalid data to the PLC, check:

- Field wiring connections, DIP switch settings, and register settings.
- Integrity of the source device and connections.
- Signal cables are not placed on or near high voltage (120 Vac or higher) control wiring. If the signal cables must pass high voltage cables, make sure that the signal cables pass the high voltage cables at 90degree angle.

If electrical interference seems to be the problem, try to place the module as far as possible from the P120 power supply and relay output modules. These products may generate electrical interference during operation. This won't affect the ADU 21X but may induce noise on the incoming channel wiring.

Testing the System

For thermocouple applications, you can test the system by temporarily short circuiting each thermocouple at the terminal block-use some wire to connect the + lead to the - lead. Short circuiting a thermocouple channel should cause that channel to read the ambient temperature-i.e., the temperature at the CJC thermistor if CJC is enabled-if not, check the terminal connections and DIP switch settings.
For RTD applications, you can test the system by enabling the internal 250 ohms shunts. Shunting an RTD channel should cause that channel to read approximately 409 degrees C (768 degrees F).

Built-in Tests The ADU 21X has built-in tests that can be enabled to check out the module's control electronics. These tests are performed automatically every time the module is powered up, but they can also be run after the module is on-line. Setting the appropriate bits ON (1) will cause the module to enter a self-test mode.

Note: When bits 16, 15, or 14 are set ON, the green LED blinks continuously until these bits are set OFF. When bits $16 \ldots 14$ are set OFF, the module may need to be restarted.

To terminate the self-test mode, simply reset the Built-in Test Enable bit (bit 14 in Control Word 4x) OFF (0). Bits 15 and 16 determine the type of test that will be executed.

BIT 16	BIT 15	BIT 14	Elements Tested
0	0	0	None (tests disabled)
0	1	1	ADU 21X Microprocessor, Dual-Port RAM, ROM, Watchdog Circuit, Ready and Run LEDs, Power Supply
1	0	1	EEPROM, Bus Interface Unit, Analog signal conditioning, Isolation communications, Power Supply, Module firm ware

If the ADU 21X fails any of these tests (amber LED blinks), restart the module. If it continues to fail, call Technical Support at 1-800-468-5342.

ADU 211/212 Universal Analog Input Module Specifications

Table of Specifications

The following table contains a list of ADU 211/212 specifications.

Module Topology	Number of Inputs	8 (2 for RTD)
	Number of Groups	2
	Points/Group	4 (1 for RTD)
	Isolation	Channel-to-bus: 500 volts, 25 micro A max. leakage at 60 Hz . Channel-to-channel: +/- 30 Vdc max.
Required Loadable	SW-IODR-001	
Power Supplies	Ext. Source Requirement	20-30 Vdc for the ADU 211: none for the ADU 212
	Consumption	2.5 VA typical, $4.0 \mathrm{VA}(167 \mathrm{~mA}$ at 24 Vdc nominal) maxi mum for the ADU 211
	Power Dissipation	2.5 VA typical, 3.0 VA maxi mum for the ADU 212
	Internal 5 V from PAB	less than 80 mA (TTL loading) for the ADU 211: 450 mA typical, 600 mA maximum for the ADU 212
DIN Rail Grounding	less than 0.1 ohms	
Input protection	Analog multiplexer resident clamps and FETs	
Input Impedance	10 M ohms typical	

Signal Inputs	Thermocouple	
	J:	0 to 760 degrees C (32 to 1400 degrees F)
	K:	0 to 1000 degrees C (32 to 1832 degrees F)
	T:	-100 to 400 degrees C (-212 to 752 degrees F)
	E:	0 to 1000 degrees C (32 to 1832 degrees F)
	R:	+500 to 1750 degrees C (932 to 3182 degrees F)
	S:	+500 to 1750 degrees C (932 to 3182 degrees F)
	B:	+500 to 1800 degrees C (932 to 3272 degrees F)
	RTD	3 - or 2/4-wire 100 ohms, 385 or 392 alpha
		-200 to 800 degrees C
	Voltage	+/-50, 500, 2000, 5000, and 10,000 mVDC
	Current	4-20 mA (12 bit)
		+/- 20 mA (16-Bit and IEEE 754)
I/O Map	Register 3x/4x	$3 \mathrm{in} / 3$ out
Integer Resolution	1 part in 4096 counts (12-bit display) 1 part in +32767 to -32768 counts (16-bit)	
IEEE754 FP resolution (engineering units)	Thermocouple: (use non-grounded type TCs)	0.7 degrees C or better
	RTD:	0.15 degrees C or better
	Voltage:	0.035 percent of full scale or better
	Current:	0.035 percent of full scale or better

Accuracy	Thermocouple at module with fixed 0 degrees C CJC	
	J:	+/-1.5 degrees C (2.7 degrees F)
	K:	+/-2.0 degrees C (3.6 degrees F)
	T:	+/-3.0 degrees C (5.4 degrees F)
	E:	+/-1.2 degrees C (2.2 degrees F)
	R:	+/- 7.0 degrees C (12.5 degrees F)
	S :	+/- 7.0 degrees C (12.6 degrees F)
	B:	+/-15.0 degrees C (27.0 degrees F)
	RTD at module	100 ohms Platinum, 385 alpha: +/- 0.40 degrees C typical, +/- 1.0 degrees C maximum
		100 ohms Platinum, 392 alpha: +/- 0.40 degrees C
	Voltage at module	$50 \mathrm{mVDC}:+/-0.40$ percent of full scale
		$0.5,2,5$ \& 10 VDC: +/-0.11 percent of full scale
	Current	4 to 20 mA : +/- 0.20 percent of full scale
		+/- 20 mA : +/- 0.20 percent of full scale
Linearization	Thermocouple:	IPTS-68 Standard, NBS MN-125
	RTD:	JIS C 1604, DIN 43760 and IEC 751
Open Circuit Detect	Thermocouple (external $22-47 \mathrm{M}$ ohms resistors required for individual open circuit detection)	
Cold Junction Compensation	10 k ohms internal or external thermistor or fixed value, $+/-1.7$ degrees C (3.1 degrees F) typical, +/-4.1 degrees C (7.4 degrees F) maximum accuracy	
RTD Excitation	200 micro A typical	
Signal Integration Time	2, 5, 33.3, 40, 50, 60, 100 and 200 msec (group selectable)	
Single Channel Update Time	(Integration $\times 1.5)+10.0$ msec typical	
Common Mode Rejection	68 dB typical at 50 or 60 Hz with integration time set at greater than 100 msec	
Calibration	Automatic and continuous	
Temperature	Operating: 0 to 60 degrees C (32 to 140 degrees F)	
	Storage: -40 to 85 degrees C (-40 to 185 degrees F)	
Relative Humidity	0 to 95 percent at 60 degrees C , non-condensing	
Vibration	3 rotational axes 2G RMS, 10 to 57 Hz 15-minute scan (1 octave per minute)	

Shock	30 G for $11 \mathrm{msec}, 1 / 2$ sine, 3 orthogonal axes	
Packaged Free Fall	3 feet (1 meter), 5 iterations each side	
Cooling	Free air convection	
EMI Susceptibility	27 to 500 mHz 10 volt/meter (per subset IEC 801-3)	
Fast Transient	$+/-1.0 \mathrm{kV}$ (per subset IEC 801-2)	
Electrostatic discharge	$8 \mathrm{kV}, 10$ discharges, no damage	
Dimensions	(W x H x D)	$1.6 \times 5.6 \times 4.5 \mathrm{in} .40 .3 \times 145.0 \times 117.5 \mathrm{~mm}$
	Weight	$0.80 \mathrm{lb}(360 \mathrm{~g})$ max.
Power Connections	$60 / 75$ copper (Cu)	
Torque	4.5 inch-pounds on set screws	
Agency Approvals	ADU $211 \&$ ADU 212	UL 508; CSA 22.2 No.142; FM Class I, Div $2^{* *} ;$ and European Directive EMC 89/336/ EEC Standards
**This equipment is suitable for use in Class 1, Division 2, Groups A, B, C, and D, or non- hazardous locations only.		

A WARNING

Substitution Warning

Substitution of components may impair suitability for Class 1, Division 2.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

ADU 214 Analog Input Module

7

At a Glance

Purpose This Chapter gives an overview of the ADU 214 Analog Input Module. This is followed by the physical characteristics of the module; installation and configuration procedures; and, lastly, the specifications of the ADU 214 Module.

A WARNING

Operative Failure Alert

The ADU 214 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Overview of the ADU 214 Analog Input Module	136
Conversion Values	139
Configuration - Concept	149
Installation	158
ADU 214 Input Module Specifications	163

Overview of the ADU 214 Analog Input Module

Physical Characteristics

The ADU 214 module is used for measuring analog data, and provides up to 8 nonisolated inputs. The main characteristics of the module follow.

Tip: This module is suitable for use on Compact 984 with memory size of 4 K or more.

- Four 4-wire analog inputs. These inputs can be used for 2-wire measurement, thus allowing up to 8 unipolar inputs, 4 bipolar voltage inputs, or combinations of both.
- Several measuring ranges that may be individually selected and mixed for each input:
The following Measuring Ranges apply to the ADU 214 Analog Input Module.

Voltage measurement	$0 \ldots 0.5,0 \ldots 1,0 \ldots 5,0 \ldots 10 \mathrm{~V}, 0.1 \ldots 0.5$,
	$0.2 \ldots 1,1 \ldots 5,2 \ldots 10 \mathrm{~V}, 0.5,1,5,10 \mathrm{~V}$
Current measurement (External precision	$0 \ldots 5,0 \ldots 10,0 \ldots 20 \mathrm{~mA}, \ldots 5,2 \ldots 10$,
resistor required)	$4 \ldots 20 \mathrm{~mA}, 5,10,20 \mathrm{~mA}$
RTD Temperature measurement	$-160 /-60 \ldots+160$ degrees C (resolution
	≤ 0.02 degrees C$)-200 \ldots+320$ degrees C
	(resolution ≤ 0.04 degrees C$)-200 \ldots+640$
	degrees C (resolution ≤ 0.08 degrees C$)$
Resistance measurement	$0 \ldots 100,0 \ldots 200,0 \ldots 500 \Omega, 0 \ldots 1000$,
	$0 \ldots 2000 \Omega$

The PLC model determines the available ranges. Refer to the tables in this chapter.

Note: Only the 15 Bit + sign resolution is supported when using the E984-258/265/ $275 / 285$ PLC models. The 12, 13 and 15 Bit + sign resolutions are all supported when using the A984-1xx, E984-24x/251/255 PLC models.

The following illustration is of the Front View and Label of the ADU 214 Module

- Broken wire testing of all 4-wire lines and self-calibration using built-in reference resistances and reference voltages
- Measuring ranges for voltage, current, temperature, and resistance can be set individually for each input
- Switch-selectable 50 ... 60 Hz operation noise suppression

Simplified

 SchematicThe following is a simplified schematic for the ADU 214 Module.

LEDS

The ADU 214 has two front panel LEDs:

- One green LED opposite Terminal 1 indicating the module is receiving 24 V power
- One green LED opposite Terminal 12 indicating the module's processor is running

Conversion Values

Overview

Conversion
Values of Unipolar Voltage Inputs, Part 1

0...0.5 V	0... 1 V	0... 5 V	0... 10 V	0.1...0.5 V	0.2... 1 V	1... 5 V	2... 10 V
<-0.008	<-0.016	<-0.08	<-0.16	<+0.052	<+0.104	<+0.52	<+1.04
				+0.052	+0.104	+0.52	+1.04
-0.008...	-0.016...	-0.08..	-0.16..	+0.094...	+0.187...	+0.936...	+1.87...
-0.000	-0.000	-0.00	-0.00	+0.099	+0.199	+0.99	+1.99
0	0	0	0	0.1	0.2	1	2
0.00002	0.00003	0.00016	0.00031	0.1000	0.2000	1.0001	2.0003
0.00025	0.0005	0.0025	0.005	0.1002	0.2004	1.002	2.004
0.0005	0.001	0.005	0.01	0.1004	0.2008	1.004	2.008
0.005	0.01	0.05	0.10	0.104	0.208	1.04	2.08
0.025	0.05	0.25	0.50	0.12	0.24	1.20	2.40
0.05	0.10	0.50	1.00	0.14	0.28	1.40	2.80
0.25	0.50	2.50	5.00	0.30	0.60	3.00	6.00
0.50	1.00	5.00	10.00	0.50	1.00	5.00	10.00
0.500 0...	1.000 0...	5.000...	10.000...	0.500...	1.000...	5.00...	10.00...
0.5119	1.0239	5.119	10.239	0.509	1.019	5.09	10.19
≥ 0.512	≥ 1.024	≥ 5.12	≥ 10.24	>0.509	>1.019	>5.09	>10.19

NOTE: Numbers not in parentheses $=$ range with + limit.

Conversion Conversion Values of Unipolar Voltage Inputs continue in the following table. Values of
 Unipolar Voltage Inputs, Part 2

15-BIT	13-BIT	12-BIT	NOTES
$-32,767$			underflow error
$0(-3,840)$ $0(-512)$ $0(-1)$		overload range	
0 +1 +16 +32 +320 +1600 +3200 +16000 +32000	4096	2048	rated value
$+32001 \ldots$ +32766	8096	4048	Linear Range
+32767			rated value
NOTE: Numbers in parentheses $=$ range with \pm limit.		overload range	

Conversion
Values of Bipolar Voltage Inputs, Part 1

The following table shows Conversion Values of Bipolar Voltage Inputs:

0.5 V	1 V	5 V	10 V
≤-0.512	≤-1.024	≤-5.12	≤-10.24
$-0.5119 \ldots$	$-1.023 \ldots$	$-5.119 \ldots$	$-10.239 \ldots$
-0.5000	-1.000	-5.000	-10.000
-0.50	-1.00	-5.00	-10.00
-0.25	-0.50	-2.50	-5.00
-0.05	-0.10	-0.50	-1.00
-0.025	-0.05	-0.25	-0.50
-0.005	-0.01	-0.05	-0.10
-0.0005	-0.001	-0.005	-0.01
-0.00025	-0.0005	-0.0025	-0.005
0	0	0	0
+0.00002	+0.00003	+0.00016	+0.00031
+0.00025	+0.0005	+0.0025	+0.005
+0.0005	+0.001	+0.005	+0.01
+0.005	+0.01	+0.05	+0.10
+0.025	+0.05	+0.25	+0.50
+0.05	+0.10	+0.50	+1.00
+0.25	+0.50	+2.50	+5.00
+0.50	+1.00	+5.00	+10.00
$+0.5000 \ldots$	$+1.0000 \ldots$	$+5.000 \ldots$	$+10.000 \ldots$
+0.5119	+1.0239	+5.119	+10.239
$\geq+0.512$	$\geq+1.024$	$\geq+5.12$	$\geq+10.24$

Conversion Values of Bipolar Voltage Inputs, Part 2

Conversion Values of Bipolar Voltage Inputs continue in the following table:

*15-BIT	13-BIT	12-BIT	NOTES
-32 767			underflow error
$\begin{aligned} & -32766 \\ & -32001 \end{aligned}$			overload range
$\begin{aligned} & -32000 \\ & -16000 \\ & -3200 \\ & -1600 \\ & -320 \\ & -32 \\ & -16 \\ & 0 \\ & +1 \\ & +16 \\ & +32 \\ & +320 \\ & +1600 \\ & +3200 \\ & +16000 \\ & +32000 \end{aligned}$	96 4096 8096	48 2048 4048	rated value Linear Range rated value
$\begin{aligned} & +32001 \\ & +32766 \end{aligned}$			overload range
+32 767	8191	4095	overflow error

Note: *Only the 15 Bit + sign resolution is supported when using the E984-258/ 265/275/285 PLC models. The 12, 13, and 15 Bit + sign resolutions are supported when using the A984-1xx, E984--24x/251/255 PLC models.

Conversion Values of Current Inputs, Part 1

The following table shows Conversion Values of Current Inputs:

$0 \ldots .10 \mathrm{~mA}$	$0 \ldots . .20 \mathrm{~mA}$	$2 \ldots 10 \mathrm{~mA}$	$4 \ldots .20 \mathrm{~mA}$	20 mA
<-0.16	<-0.32	$<+1.04$	$<+2.08$	≤-20.479
				$-20.478 \ldots$
				-20.000
		$+1.04 \ldots$	$+2.08 \ldots$	
$-0.16 \ldots$	$-0.32 \ldots$	$+1.87 \ldots$	$+3.74 \ldots$	
-0.00	-0.00	+1.99	+3.99	
				-20.00
				-10.00
				-2.00
				-1.00
0	0	+2	+4	-0.02
+0.005	+0.01	+2.004	+4.008	+0.01
+0.01	+0.02	+2.008	+4.016	+0.02
+0.1	+0.20	+2.08	+4.16	+0.20
+0.5	+1.00	+2.40	+4.80	+1.00
+1	+2.00	+2.80	+5.60	+2.00
+5	+10.00	+6.00	+12.00	+10.00
+10.0	+20.00	+10.00	+20.00	+20.00
$+10.000 \ldots$	$+20.000 \ldots$	$+10.00 \ldots$	$+20.00 \ldots$	$+20.000 \ldots$
+10.239	+20.478	+10.19	+20.38	+20.478
$\geq+10.24$	$\geq+20.479$	$>+10.19$	$>+20.38$	$\geq+20.479$

Conversion Values of Current Inputs, Part 2

Conversion Values of Current Inputs continue in the following table:

*15-BIT	13-BIT	12-BIT	NOTES
-32 767			underflow error
$\begin{array}{\|l} \hline-32766 \\ -32001 \\ 0(-3840) \\ 0(-512) \\ 0(-1) \end{array}$			overload range
$\begin{aligned} & -32000 \\ & -16000 \\ & -3200 \\ & -1600 \\ & -320 \\ & -32 \\ & -16 \\ & 0 \\ & +1 \\ & +16 \\ & +32 \\ & +320 \\ & +1600 \\ & +3200 \\ & +16000 \\ & +32000 \end{aligned}$	96 4096 8096	48 2048 4048	rated value Linear Range rated value
$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$			overload range
+32 767	8191	4095	overflow error
NOTE: Numbers in parentheses = range with \pm limit			

Note: *Only the 15 Bit + sign resolution is supported when using the E984-258/ 265/275/285 PLC models. The 12, 13, and 15 Bit + sign resolutions are supported when using the A984-1xx, E984--24x/251/255 PLC models.

Conversion
Values of Temperature Inputs, Part 1

The following table shows Conversion Values of Temperature Inputs:

$-60 \ldots+160^{\circ} \mathrm{C}$	$-160 \ldots+160^{\circ} \mathrm{C}$	$-200 . . .+320^{\circ} \mathrm{C}$	-200 ... +640 ${ }^{\circ} \mathrm{C}$
<-60	<-160	<-200	<-200
	-160		
	-100	-200	
-60	-60	-120	
-50	-50	-100	-200
-16	-16	-32	-64
0	0	0	0
+0.005	+0.005	+0.01	+0.02
+0.08	+0.08	+0.16	+0.32
+0.16	+0.16	+0.32	+0.64
+8	+8	+16	+32
+16	+16	+32	+64
+80	+80	+160	+320
+160	+160	+320	+640
+160.005 ...	+160.005 ...	+320.01 ...	+640.02 ...
+163.83	+163.83	+327.66	+655.32
$\geq+163.84$	$\geq+163.84$	$\geq+327.67$	$\geq+655.34$

Conversion Values of Temperature Inputs, Part 2

Conversion Values of Temperature Inputs continue in the following table:

*15-BIT	13-BIT	12-BIT	NOTES
-32 767			measuring range underflow (error)
$\begin{aligned} & -32000 \\ & -22000 \\ & -12000 \\ & -10000 \\ & -3200 \\ & 0 \\ & +1 \\ & +16 \\ & +32 \\ & +320 \\ & +1600 \\ & +3200 \\ & +16000 \\ & +32000 \end{aligned}$	96 4096 8096	48 2048	rated value Linear Range rated value
$\begin{aligned} & +32001 \\ & +32766 \end{aligned}$			overload range
+32 767	8191	4095	measuring range overflow error

Note: *Only the 15 Bit + sign resolution is supported when using the E984-258/ 265/275/285 PLC models. The 12, 13, and 15 Bit + sign resolutions are supported when using the A984-1xx, E984--24x/251/255 PLC models.

Conversion
Values of Resistance Inputs, Part 1

The following table shows Conversion Values of Resistance Inputs:

$0 \ldots .100 \Omega$	$0 \ldots . .200 \Omega$	$0 \ldots 500 \Omega$	$0 \ldots 1000 \Omega$	$0 \ldots \mathbf{2 0 0 0 \Omega}$
<-1.6	<-3.2	<-8	<-16	<-32
$0 \ldots-1.6$	$0 \ldots-3.2$	$0 \ldots-8$	$0 \ldots-16$	$0 \ldots-32$
0	0	0	0	0
0.003	0.006	0.015	0.03	0.06
0.05	0.1	0.25	0.5	1
0.1	0.2	0.5	1	2
1	2	5	10	20
5	10	25	50	100
10	20	50	100	200
50	100	250	500	1000
100	200	500	1000	2000
$100.00 \ldots$	$200.00 \ldots$	$500.01 \ldots$	$1000.03 \ldots$	$2000.06 \ldots$
102.39	204.78	511.97	1023.94	2047.88
≥ 102.40	≥ 204.79	≥ 511.98	≥ 1023.97	≥ 2047.94

Conversion Values of Resistance Inputs, Part 2

Conversion Values of Resistance Inputs continue in the following table:

Note: *Only the 15 Bit + sign resolution is supported when using the E984-258/ 265/275/285 PLC models. The 12, 13, and 15 Bit + sign resolutions are supported when using the A984-1xx, E984--24x/251/255 PLC models.

Configuration - Concept

Configured Registers Modsoft

The ADU 214 module requires two sequental 4X command registers and 3 sequental 3X status registers all Traffic Copped as BIN. Selecting a channel number higher than 8 , or one already included in a channel pair measurement, will result in an ILLEGAL 4X COMMAND" bit to be set in the 3X register response.

The following table shows Configured Registers for the ADU 214 Module.

Registers	Contents
4 x	50 x Decimal, with $\mathrm{x}=$ Channel 1 ... 8
$4 \mathrm{x}+1$	Configuration Command (Refer to Register Configuration Commands - Modes - Modsoft, p. 150)
3 x	Configure Command Response (see Invalid Commands - Modsoft, p. 155
$3 \mathrm{x},+1$	0
$3 \mathrm{x}+2$	0

4X output register commands, and resultant 3X register formats are:

- For unipolar measurements, select Channel 1 ... 8 and enter decimal 1 ... 28 for the configuration code in register $4 x+1$.
- For bipolar measurements, channel pairs are wired on the field connector, and are also configured in pairs. Either channel of the pair may be selected. For these measurements, the even channel must be used in the $4 x$ read command. The odd channel will be indicated not active or not valid in the $3 x$ status register, and will display zero in its data register. For example, channel pairs are $1 / 2,3 / 4$, $5 / 6$, and $7 / 8$. To configure the top input for bipolar operation, select either 1 or 2 for the x value in the 50x command, and enter decimal 33 to 36 for the configuration code in register $4 x+1$.
- For RTD or resistance measurements, channel pairs are wired on the field connector and are also configured in pairs. Either channel of the pair may be selected. For these measurements, the even channel must be used in the $4 x$ read command. The odd channel will be indicated not active or valid in the $3 x$ status register, and will display zero in its data register. For example, channel pairs are $1 / 2,3 / 4,5 / 6$, and $7 / 8$. To configure the top input for these measurements, select either 1 or 2 for the x value in the 50 x command, and enter decimal 64 ... 95 (RTD) or 96 ... $116(\Omega)$ for the configuration code in register $4 x$ +1 .
- If backplane or field power is lost, the module must be reconfigured.

Register Configuration Commands Modes - Modsoft

The following tables indicate the $4 \mathrm{X}+1$ Register Configuration Commands, for the ADU 214 Module, in its various modes.

Commands (Decimal)	Ranges		
Two-wire Unipolar Mode			
1	$0 . . .10 \mathrm{~V}$		
2	$0 \ldots 5 \mathrm{~V}$		
3	$0 \ldots 1 \mathrm{~V}$	$0 . . .20 \mathrm{~mA}^{*}$	$0 \ldots 10$ mA**
4	$0 \ldots 0.5 \mathrm{~V}$	$0 \ldots 10 \mathrm{~mA}^{*}$	$0 \ldots 5 \mathrm{~mA}^{* *}$
9	$2 \ldots 10 \mathrm{~V}$		
10	$1 \ldots 5 \mathrm{~V}$		
11	0.2 ... 1 V	$4 \ldots 20 \mathrm{~mA}^{*}$	2 ... 10 mA**
12	0.1 ... 0.5 V	$2 \ldots 10 \mathrm{~mA}^{*}$	$1 . .55 \mathrm{~mA}^{* *}$
17	$0 . .10 \mathrm{~V}$		
18	$0 \ldots 5 \mathrm{~V}$		
19	$0 \ldots 1 \mathrm{~V}$	0 ... $20 \mathrm{~mA}^{*}$	$0 \ldots 10 \mathrm{~mA}^{* *}$
20	$0 \ldots 0.5 \mathrm{~V}$	$0 \ldots 10 \mathrm{~mA}^{*}$	$0 \ldots 5 \mathrm{~mA}^{*}$
25	$2 \ldots 10 \mathrm{~V}$		
26	$1 \ldots 5 \mathrm{~V}$		
27	0.2 ... 1 V	$4 \ldots 20 \mathrm{~mA}^{*}$	2 ... 10 mA**
28	$0.1 \ldots 0.5 \mathrm{~V}$	$2 . . .10 \mathrm{~mA}^{*}$	$1 . .55 \mathrm{~mA}^{* *}$

Note: When using Commands $17 \ldots 28$, the message CHANNEL INVALID is displayed if READ 15 BIT command is used.
Two-wire Bipolar Mode

33	+10 V		
34	+5 V		$+10 \mathrm{~mA}^{* *}$
35	+1 V	$+20 \mathrm{~mA}^{*}$	$+5 \mathrm{~mA}^{* *}$
36	+0.5 V	$+10 \mathrm{~mA}^{*}$	
${ }^{*}=50 \Omega$ required across input	${ }^{* *}=100 \Omega$ required across input		

Register Configuration Commands Detectors Modsoft

The table below gives Register Configuration Commands for the ADU 214 Module, by Four-Wire Temperature Detector.

Four-wire Temperature detector	
64	$-60 \ldots+160$ o C with Ni 100
65	$-160 \ldots+160$ o C with Pt 100
66	$-200 \ldots+320$ o C with Pt 100
67	$-200 \ldots+640$ o C with Pt 100
68	$-60 \ldots+160$ o C with Ni 200
69	$-169 \ldots+160$ o C with Pt 200
70	$-200 \ldots+320$ o C with Pt 200
71	$-600 \ldots+640$ o C with Pt 200
72	$-160 \ldots+160$ o C with Ni 500
73	$-200 \ldots+320$ o C C with Pt Pt 500
74	$-200 \ldots+640$ o C with Pt 500
75	$-60 \ldots+160$ o C with Ni 1000
76	$-160 \ldots+160$ o C with Pt 1000
77	$-200 \ldots+320$ o C with Pt 1000
78	$-200 \ldots+640$ o C with Pt 1000
79	

Register Configuration Commands follow, for Two- and Three-wire Temperature detector - with wire compensation (10 Ω)

80	$-60 \ldots+160$ o C with Ni 100
81	$-160 \ldots+160$ o C with Pt 100
82	$-200 \ldots+320$ o C with Pt 100
83	$-200 \ldots+640$ o C with Pt 100
84	$-60 \ldots+160$ o C with Ni 200
85	$-160 \ldots+160$ o C with Pt 200
86	$-200 \ldots+320$ o C with Pt 200
87	$-200 \ldots+640$ o C with Pt 200
88	$-60 \ldots+160$ o C with Ni 500
89	$-200 \ldots+320$ o C with Pt 500
90	$-200 \ldots+640$ o C with Pt 500
91	$-60 \ldots+160$ o C with Ni 1000
92	$-60 \ldots+160$ o C with Ni 100
93	$-200 \ldots+320$ o C with Pt 1000
94	$-200 \ldots+640$ o C with Pt 1000
95	

Register Configuration Commands Resistance Measuring Modsoft

The following table provides Register Configuration Commands for the ADU 214 Module, by form of resistance measuring.

Four-wire Resistance measuring	
96	$0 \ldots 500 \Omega$
97	$0 \ldots 500 \Omega$
98	$0 \ldots 500 \Omega$
99	$0 \ldots 1000 \Omega$
100	$0 \ldots 2000 \Omega$
Two-wire Resistance measuring with wire compensation (10Ω)	
112	$0 \ldots 100 \Omega$
113	$0 \ldots 200 \Omega$
114	$0 \ldots 500 \Omega$
115	$0 \ldots 1000 \Omega$
116	$0 \ldots 2000 \Omega$

\qquad

Register Configuration Commands Read Values Modsoft

The following table addresses Read Configuration Values for the ADU 214 Module.

Read Configuration	4YX Decimal, with Y and $\mathrm{X}=$ Channels to be read (1 ... 8)
4 X	Not used
$4 \mathrm{X}+1$	Configure Command Response (Refer to Invalid Commands - Modsoft, p. 155)
3 X	Channel X Configuration
$3 \mathrm{X}+1$	Channel Y Configuration
$3 \mathrm{X}+2$	

Read Values Table appears next.

Read 12-bit Value	
4X	4YX Decimal, with Y and $\mathrm{X}=$ Channels to be read (1... 8)
4X+1	Not used
3 X	Configure Command Response (Refer to Invalid Commands - Modsoft, p. 155)
$3 \mathrm{X}+1$	Channel X Measurement
$3 \mathrm{X}+2$	Channel Y Measurement
Read 13-bit Value	
4X	2YX Decimal, with Y and $\mathrm{X}=$ Channels to be read (1 ... 8)
$4 \mathrm{X}+1$	Not used
3 X	Measure Command Response (Refer to Invalid Commands - Modsoft, p. 155)
$3 \mathrm{X}+1$	Channel X Measurement
$3 \mathrm{X}+2$	Channel Y Measurement
Read 15-bit Value	
4X	3YX Decimal, with Y and $\mathrm{X}=$ Channels to be read (1 ... 8)
$4 \mathrm{X}+1$	Not used
3 X	Measure Command Response (Refer to Invalid Commands - Modsoft, p. 155)
$3 \mathrm{X}+1$	Channel X Measurement
$3 \mathrm{X}+2$	Channel Y Measurement

The Read Module Status table for the ADU 214 follows.

Read Module Status	
$4 X$	$\mathbf{0 0 0}$ Decimal
$4 X+1$	Not used
$3 X$	Configure Command Response (Refer to Invalid Commands - Modsoft, p. 155)
$3 X+1$	0
$3 X+2$	0

Invalid
 Commands Modsoft

Invalid 4X register commands, and valid commands other than "READ MODULE STATUS" - that are issued when the module is not ready - result in the responses described below.
The following is a table of invalid commands, for the ADU 214 Module.

Invalid Commands	
$3 X$	General Status (Bits 9-16 only, Bits 1-8 = 0); refer to Invalid Commands - Modsoft, p. 155
$3 X+1$	0
$3 X+2$	0

The following figure represents the 3 x Status Register.

The following illustration is the Configure Command Response for the ADU 214 Analog Module.

Next is the MEASURE COMMAND Response.

* For inactive channels: Overflow =0, Invalid = 1

The following figure is the Data Input Register Structure for the ADU 214 Analog Module.

3x+1 Data Input Register

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

3x + 2 Data Input Register

Installation

Introduction The following information describes how to install the ADU 214.

Installation Overview
installing the ADU 214 module consists of:

- Field wiring the module for the application selected
- Setting the DIP switches for appropriate AC noise suppression and contact fretting requirements
- I/O mapping and configuring the module to fit its application

Field Wiring The following illustration is a Wiring Diagram for the ADU 214 Module.

1) Four-wire RTD (Pt 100 ... 1000, Ni 100 ... 1000) or resistance (0 ... 2000Ω)
2) External reference resistance 50 or $100 \Omega, 0.1 \%, 0.125 \Omega$ for current measurement
3) Two-wire RTD (Pt 100 ... 1000, Ni 100... 1000) with 10Ω compensation
4) Three-wire RTD (Pt 100 ... 1000, Ni 100 ... 1000) with 10Ω compensation

Note: For general wiring and set-up instructions, refer to the 984-A120 Compact Programmable Controllers User Guide (GM-A984-PCS).

- Foil-shielded cables (2 or $4 \times 0.5 \mathrm{~mm}$ twisted pair per channel) must be used for connections. All channels can be run within one joint shielded cable.
- If RTD detectors are connected with 4 wires (e.g., Ni 100, Pt 100), conductors for current and voltage path must be twisted in pairs.
- The connections between the shield and ground must be as short as possible ($<20 \mathrm{~cm}$) at one end. If higher noise levels exist, the cable shield must be grounded at both ends.
- The cable must be kept a minimum distance of $>0.5 \mathrm{~m}$ away from power lines or similar sources of electrical interference.
- When using two- or three-wire RTD configurations, the ADU 214 requires an external adjustable 10Ω series resistor in the RTD loop. This compensates for the unknown lead resistance, since the normal compensatory lead pair is missing. To calibrate the channel for the RTD configurations with 10Ω compensation (configuration commands 80-95 decimal), perform the steps in the following procedure.

Note: Refer to Configuration - Concept, p. 149 for information on how to select the two- or three-wire RTD operating mode.

Calibrating the Channel for RTD Configurations Procedure

To calibrate the channel for the RTD configurations with 10Ω compensation.

Step	Action
1	Set up the RTD loop with the adjustable 10Ω in the circuit and short the end of the wire run.
2	Configure the appropriate ADU 214 channel for $0-100 \Omega$ input (configuration command decimal 96).
3	Adjust the 10Ω potentiometer for a channel input reading of 3200 in the 15-bit mode-i.e., read 15 BIT VALUE, or the 4 x Function Code Register $=3 \mathrm{YX}$.

Accuracy Errors

For PT100 measurements, if lead resistance is known to be less than 1Ω, the uncompensated 4 -wire configuration commands 64 ... 79 may be used and the 10 Ω adjustable resistor left out of the circuit. No calibration is required, but the accuracy errors listed in the following table can be expected.

Accuracy Errors

Lead Resistance	Error
1.0Ω	+2.605 C
0.10Ω	+0.255 C
0.01Ω	+0.0255 C

The following illustration shows the locations of the DIP Switches.

Settings


```
OFF ON
    \squareB1 50 Hz noise suppression (as shipped)
\square B1 60 Hz noise suppression
\squareB2 Fretting switched on (as shipped)
\square B2 Fretting switched off
```

Noise
Suppression (DIP Switch B1)

The ADU 216 provides suppression of ac power frequencies on the peripheral lines. The module is shipped with 50 Hz suppression, and can be switched to 60 Hz suppression with DIP switch B1.

Fretting (DIP Switch B2)

Fretting prevents an increase of contact resistance on peripheral connections. Fretting is accomplished by outputting 10 V across the contacts at defined time intervals. The resulting current (flowing for 1 ms) is limited to $<8 \mathrm{~mA}$. The contacts of the active inputs are fretted cyclically every 30 min . The fretting process is selected with DIP switch B2.

ADU 214 Input Module Specifications

Specifications The following information describes the ADU 214 Input Module specifications.
The following table provides ADU 214 Specifications for: Power Supply; Required Loadable; Inputs; and I/O Map.

Power Supply	External Supply	24 Vdc typical 70 mA, maximum 150 mA
	Internal Power Supply (via system bus)	5 Vdc typical 45 mA, maximum 100 mA
	Power Dissipation	2Ω typical, maximum 3Ω
Required Loadable	SW-IODR-001 (See Requirements for CE Compliance, p. 857)	
Inputs	Number	4 Inputs (4-pole/2-pole) temperature/ resistance 4 Inputs, two-wire current/ voltage bipolar or 8 Inputs, two-wire current/voltage unipolar; inputs may be mixed
I/O Map	Register 3x/4x	Non-isolated, channel-to-channel
	Potential Isolation	3 in/2 out

The following table shows the Voltage Measurements for the ADU 214 Module.

Voltage Measurement	Input Impedance	$>1 \mathrm{M} \Omega$	
	Unipolar Measuring Ranges	$\begin{aligned} & 0 \ldots 0.5 \mathrm{~V}, 0 \ldots 1 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V} \\ & 0.1 \ldots 0.5 \mathrm{~V}, 0.2 \ldots 1 \mathrm{~V}, 1 \ldots 5 \mathrm{~V}, 2 \ldots 10 \mathrm{~V} \end{aligned}$	
	Bipolar Measuring Ranges	$+0.5 \mathrm{~V},+1 \mathrm{~V},+5 \mathrm{~V},+10 \mathrm{~V}$	
	Resolution	approx. 0.003% of final value, 15-bit plus sign	
	Measuring Fault at $25^{\circ} \mathrm{C}$	For measuring ranges $0.5 \mathrm{~V} / 1 \mathrm{~V}$	$\pm 0.02 \%$ of Measuring Range Final Value (MFV), $\pm 0.15 \%$ of Measured Value (MV)
		For measuring ranges $5 \mathrm{~V} / 10 \mathrm{~V}$	$\begin{aligned} & \pm 0.01 \% \text { of MFV, } \pm 0.02 \% \\ & \text { of MV } \end{aligned}$
	Measuring Fault at 0 ... $60^{\circ} \mathrm{C}$	For measuring ranges $0.5 \mathrm{~V} / 1 \mathrm{~V}$	$\begin{aligned} & \pm 0.10 \% \text { of MFV, } \pm 0.35 \% \\ & \text { of MV } \end{aligned}$
		For measuring ranges $5 \mathrm{~V} / 10 \mathrm{~V}$	$\begin{aligned} & \pm 0.02 \% \text { of MFV, } \pm 0.11 \% \\ & \text { of MV } \end{aligned}$
	Typical Measuring Error	≤ 0.5 above maximal errors	
	Inphase Voltage Range (Differential input for voltage measuring) Voltage of each input against GND	$\leq+11 \mathrm{~V}$	
	In-phase suppression	$\geq 60 \mathrm{~dB}$	
	Maximum Overvoltage Static (1 Input for each module)	+30 V (24V power supply ON) +20 V (24V power supply OFF)	
	Maximum Overvoltage Dynamic	+50 V for $\leq 100 \mathrm{~ms}$	

This table gives the Current Measurements for the ADU 214 Module

Current Measurement	Measuring ranges with external 50Ω reference resistance 0.1%, 0.1Ω, TC 25 ppm	$\begin{aligned} & 0 \ldots 10 \mathrm{~mA}(0 \ldots 0.5 \mathrm{~V}), 0 \ldots 20 \mathrm{~mA} \\ & (0 \ldots 1 \mathrm{~V}), 2 \ldots 10 \mathrm{~mA}(0.1 \ldots 0.5 \mathrm{~V}), \\ & 4 \ldots 20 \mathrm{~mA}(0.2 \ldots 1 \mathrm{~V}), \pm 10 \mathrm{~mA} \\ & (+0.5 \mathrm{~V}), \pm 20 \mathrm{~mA}(\pm 1 \mathrm{~V}) \end{aligned}$
	Measuring ranges with external 100Ω measuring resistance 0.1%, 0.1Ω, TC 25 ppm	$\begin{aligned} & 0 \ldots 5 \mathrm{~mA}(0 \ldots 0.5 \mathrm{~V}), 0 \ldots 10 \mathrm{~mA} \\ & (0 \ldots 1 \mathrm{~V}), 1 \ldots 5 \mathrm{~mA}(0.1 \ldots 0.5 \mathrm{~V}), \\ & 2 \ldots 10 \mathrm{~mA}(0.2 \ldots 1 \mathrm{~V}), \pm 5 \mathrm{~mA} \\ & (\pm 0.5 \mathrm{~V}), \pm 10 \mathrm{~mA}(\pm 1 \mathrm{~V}) \end{aligned}$
	Resolution	Approximately 0.003% of final value, 15-bit plus sign
	Critical values	See the various tables that descirbe Voltage Ranges. Load capacity of reference resistance must be considered, i.e., $50 \Omega 0.1 \Omega$ maximum 40 mA continuous

The following table describes Temperature Measurement for the ADU 214 Module

The following table displays Resistance Measurement (4-wire wire), for the ADU 214 Module.

Resistance Measurement (4-wire wire)	Input Impedance Measuring Ranges	>1 M Ω	
		$\begin{aligned} & 0 \ldots 100 \Omega, 0 \ldots 200 \Omega, 0 \ldots 500 \Omega \text {, } 1 . .10200 \Omega \\ & 0 \ldots 1000 \Omega, 0 \ldots 2000 \Omega \end{aligned}$	
	Resolution	$\leq 0.005 \%$ of final value, >14 Bit	
	Measuring Fault at $25^{\circ} \mathrm{C}$ for measuring range 100 ... 2000Ω	$\pm 0.1 \%$ of Measuring Range Final Value (MFV)	
	Measuring Fault at$0 \ldots 60^{\circ} \mathrm{C}$	for measuring range 100Ω	$\pm 0.30 \%$ of MFV
		for measuring range 200Ω	$\pm 0.25 \%$ of MFV
		for measuring range $500 . . .2000 \Omega$	$\pm 0.20 \%$ of MFV
	Constant current	Approx. 1.5 mA for measuring range $0 \ldots$ 2000Ω; approx. 2.5 mA for measuring ranges$0 \ldots 100 \Omega, 0 \ldots 200 \Omega, 0 \ldots 500 \Omega 0 \ldots 1000 \Omega$	

The following table addresses various aspects of the ADU 214 Module: Input Characteristics; Connections; Weight; and Agency Approvals.

Dynamic Characteristics of Inputs	Conversion time for all 8 inputs	300 ms max
	Input Delay Time constant for HF suppression	0.12 ms , typ
	Measurement Integration Time	20 or 16.66 ms switchable
	Selectable AC Power Interference Suppression for $\mathrm{f}=\mathrm{n} \times 50 / 60 \mathrm{~Hz}$	$\mathrm{n}=1,2$...push-pull interferences $>60 \mathrm{~dB}$ (peak value of interference voltage and measuring voltage \leq final value $\times 1.1$)
Connections	4-wire Cable Length	max. 50 m for voltage detector
	2-wire Cable Length	max. 100 m for voltage detector
	4-wire Line Resistance	max. 25Ω for each conductor
	4-wire Line Capacitance	max. 10 nF for each conductor
Weight	. 5 lb (.22kg)	
Agency Approvals	UL 508; and CSA 22.2 No. 142	

ADU 216 Analog Input Module

8

At a Glance

Introduction \quad This chapter describes the ADU 216 analog input module.
What's in this
This chapter contains the following topics:

Topic	Page
What Is the ADU 216 Analog Input Module?	170
ADU 216 Analog Input Module Conversion Ranges	171
ADU 216 Analog Input Module Physical Characteristics	172
ADU 216 Analog Input Module Configuration	176
ADU 216 Analog Input Module Programming Modes	178
ADU 216 Analog Input Module Calibration	183
ADU 216 Analog Input Module Specifications	185

What Is the ADU 216 Analog Input Module?

Brief Product Description

The ADU 216 is an eight-channel analog input module with opto-isolation, designed to be used in thermocouple temperature and low-voltage measurement applications. It performs analog-to-digital conversions using a dual-slope integrating conversion method, converting analog input signals into digital values based on the principle of successive approximation.

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW—IODR— 001) for proper operation when using certain PLCs (A984—1xx, E984—24x/251/ 255) with Modsoft.

The ADU 216 module has the following features:

- Operates off the 5 V supply voltage provided internally over the I/O bus, with no user-supplied external power source required.
- 16-bit resolution
- All eight channels are periodically strobed with a 1 mA current pulse to detect and report open circuits.

Note: You may use an ADU 257 module with its DIP switch set to the ADU 216 mode. In this mode the ADU 257 module performs just like an ADU 216 module.

A WARNING
Compatibility Warning
The ADU 216 module will operate properly only when used with an A984, E984, or
Micro $512 / 612$ controller.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

A WARNING

Compatibility Warning
The ADU 216 module will operate properly only when used with an A984, E984, or Micro 512/612 controller. equipment damage.

ADU 216 Analog Input Module Conversion Ranges

Introduction The PLC model determines the ranges.

Conversion A table is provided below for each of the following:
Ranges

- A984-1xx and E984-24x/251/255
- E984-258/265/275/285

The ranges for A984-1xx and E984-24x/251/255 are listed below.

Signal	Conversion	Resolution
K Thermocouple	(NiCrNi, IEC 584)	0.05 degrees C
J Thermocouple	(FeCuNi, IEC 584)	0.05 degrees C
Unipolar voltage	(linear)	1.11 micro V

The ranges for A984-1xx and E984-24x/251/255 are listed below.

Input (J TC degrees C)	Input (K TC degrees C)	Input (L TC C)	Decimal Value 15bits+sign	Operating Results
<-210	<-270	<-200	0	Under range
	-270		27368	Rated value range
-210	-210		28568	
-200	-200	-200	28768	
0	0	0	32768	
+900	+900	+900	50768	
+1200	+1200		56768	
	+1370	$>+1370$	$>+900$	60168
$>+1200$		+65535	Over range	

Selection of the correct input conversion algorithm is done via the application program and the 4 x holding register that is I/O mapped to this module (see ADU 216 Analog Input Module Programming Modes, p. 178.

Note: The ADU 216 module has open wire detection. If a channel is not wired, the READY (fault) LED will illuminate.

Note: The ADU 216 does not support bipolar mode.

ADU 216 Analog Input Module Physical Characteristics

Front View

The ADU 216 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be completed with information such as the signal values, etc., in the spaces provided.
The following illustration shows a front view of the ADU 216 including the label.

LEDs

The ADU 216 has two green LEDs.

- READY (fault): One LED opposite terminal \#1, if on or flashing, indicates that the on-board processor detected a fault condition, such as over range, open circuit, and so forth. For more information, see the Note.
- RUN: One green LED opposite terminal \#12, if on, indicates that the on-board processor was initialized properly and is operating normally (i.e., continuously resetting the watchdog timer controlling the LED), and that the PLC is communicating with the module.

Note: Although the LED opposite terminal \#1 is labeled READY, it actually indicates a fault condition. Note that this LED may be either green or red, but its function remains the same regardless of its color.

Simplified

 SchematicThe following illustration is a simplified schematic for the ADU 216.

Block Diagram

The following illustration is a block diagram for the ADU 216.

ADU 216 Analog Input Module Configuration

Introduction The following items must be addressed when configuring the ADU 216:

- The module must be I/O Mapped as five 30XXX Input Registers and one 40XXX Output/Control Register, and Binary data type.
- Make connections and assignments of input addresses.
- Identify overall mode of operation, type of input, and error indication.
- Cabling guidelines.

Note: You may not use both type J and type K thermocouples with the same module.

Note: The measured temperatures using type J or type K thermocouples must be higher than the reference sensor (cold junction) temperature to produce proper results.

Cabling

Shielded, twisted pair cable (2 or $4 \times 0.5 \mathrm{~mm}$ per channel) should be used. All channels can be connected with a common shielded cable.

Note: Unused inputs must be short circuited (jumper supplied).
An ADU 216 wiring example and associated registers for inputs is provided below.

Note: Voltages induced into cables (noise, etc.) must not exceed + 0.5 V measured at the input terminal versus GND.

Note: The reference sensor (cold junction) is factory-installed between terminals 12 and 13. For greater distances between the ADU 216 and the object of temperature measurement, the sensor can also be mounted at the remote terminal as shown (remember to observe correct polarity). The cable should be shielded twisted-pair to reduce susceptibility to induced noise signals.

ADU 216 Analog Input Module Programming Modes

Raw Module Data The ADU 216 module provides unipolar data.
Data modes are outlined below.

Modes	Unipolar
Full Scale	$0 \ldots 65535 \mathrm{Dec}$
	$0 \ldots$ FFFF Hex
Analog Value	$0 \ldots 728.155 \mathrm{~V}$
Value per Digit	1.11 micro V

Binary Example relates to the module. Modsoft loadables may change these values.

General
The ADU 216 is an 8-channel analog input module. The module operates in one of several modes, and the type of input signal that it processes is software selectable. The mode and signal type are set by the Traffic Copped 40XXX output register.
Five sequential 30XXX registers must also be Traffic Copped. The first register is used to read module operating status, and the remainder contain data from four of the eight channel inputs (the control register determines which inputs are reflected in the 30 XXX input registers). Channel input data is updated every 1.5 seconds.

40XXX Control Register

Bits in the ADU 216 control word and their meanings are shown in the following illustration.

40XXX CONTROL WORD

Bits $2 \ldots 4$ must not be changed during operation. However, bits 0 and 1 may be changed during operation. Bits $5 \ldots 15$ must always be set to 0 .

Example:

0	0	0	0	0	0	0	0	0	0

Not Used

11
Read Ch. 5... 7 and reference sensor (Ch. 8)
Type J Thermocouple
Temperatures above and below reference

30XXX Status and Data Registers

The figure above (bits in the ADU 216 control word and their meanings) describes the bit significance of the first 30XXX input register which displays the module status. The next four registers contain data representative of the individual channel input values. Refer to Types of Modes and Their Functions, p. 182 for information on the values that may be expected.

Data values are the result of the type of input signal selected and the module operating mode selected.

Traffic Cop Registers	Data
$30 X X X$	Module Status Information
$30 X X X+1$	Ch \#1 Data/Ch \#5 Data
$30 X X X+2$	Ch \#2 Data/Ch \#6 Data
$30 X X X+3$	Ch \#3 Data/Ch \#7 Data
$30 X X X+4$	Ch \#4 Data/Ch \#8 Data

Channel \#8 data can be either the result of the input signal applied to terminals 20 and 21, or the reference sensor (cold junction) connected to terminals 12 and 13 depending on the bit settings in the 40XXX control register. To use Channel \#8 ($30 \mathrm{xxx}+4$) as the reference sensor (cold junction) value, ensure Bits 0 and 1 are set to a one.

Note: The module scan rate is 1.5 seconds when you change the control word. It may take up to 1.5 seconds until the requested information is available in the status word. Therefore, the measured values taken within this time frame is invalid.

Note: The values of the $3 x$ register(s) always reflect the reference sensor value (cold junction) of unused (jumpered) inputs.

Bits in the ADU 216 status word and their meanings are illustrated below. 3x Status Register

The following figure shows the Bits in the ADU 216 Control Word and their meanings

Open circuit detected in Channel 4

Open circuit input channel detected
Reference sensor connected
Module ready

Types of Modes and Their Functions

When power is first applied to the module, it will be in a state equivalent to that before power down. As long as power to the unit is maintained, the operating mode of the module will be unchanged through a stop/start cycle.

When the module goes out of range-either over or under range-and then returns to a valid operating range, the module will resume proper operations unless your out-of-range condition reaches or exceeds the safe operating range of +30 VDC.

A CAUTION

Unit Overload Hazard

We do not recommend measuring high ohmic voltage sources, because the ADU 216 may heat up the sensor.
Failure to follow this instruction can result in injury or equipment damage.

L WARNING
Unit Damage Hazard
Operation at an extreme out-of-range voltage - at or beyond +30 Vdc - will cause
permanent damage to the module.
Failure to follow this instruction can result in death, serious injury, or
equipment damage.

A WARNING

Unit Damage Hazard
Operation at an extreme out-of-range voltage - at or beyond $+30 \mathrm{Vdc}-$ will cause permanent damage to the module.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

ADU 216 Analog Input Module Calibration

Introduction

\triangle CAUTION

Calibration caution.

Modicon recommends that units requiring recalibration be returned to the factory, since inaccuracies could be due to faulty components. However, users who wish to perform their own calibration should use the following procedure.
Failure to follow this instruction can result in injury or equipment damage.
By adjusting the two potentiometers on the top of the ADU 216 module, you can calibrate the signal conversion of the eight input channels and the reference sensor. In this procedure, R76 is used to calibrate the input channels, and R79 is used to calibrate the compensation by the reference sensor. Items required for calibration are:

- A dc Power Supply (+ 72.8 mV)
- A precision thermometer

Calibrating the Analog Input Channels

The following illustration shows the location of the potentiometers on the ADU 216.

The following is the procedure for adjusting the potentiometers:

Step	Action
1	Connect a DC source (+72.800 mV) to one input channel. Set the module for Voltage Input (linear). Adjust R76 for a reading of FFF2 Hex.
2	Set the module read the reference sensor input at Channel 8.
3	Measure the exact temperature of the AD592 reference sensor element.
4	Adjust the reading for Channel 8 8 with R79 to the temperature measured in Step 3 (divide the reading by 20 for the module resolution of 0.05 degrees C/digit).

ADU 216 Analog Input Module Specifications

Table of
Specifications \quad The following table contains a list of ADU 216 specifications.

Module Topology	Number of Channels	8	
	Data Format	Voltage or temperature value	
	Isolation	Channel-to-Bus: +/- 300 Vdc Non-isolated channel-tochannel	
Required Load able	SW-IODR-001		
Power Supply	Internal Source (from I/O bus)	$5 \mathrm{Vdc}, 100 \mathrm{~mA}$ typ., 150 mA max.	
	Power Dissipation	0.5 Ohm typical; 1 Ohm max.	
Voltage and Thermocouple Input Capabilities	Linear Measuring Range	Unipolar	0 to 72.8 mV (1.1 micro $\mathrm{V} /$ digit)
	Ranges	Type J: Ambient ... 1100degrees C Type K: Ambient ... 1370 degrees C	
	Compensated Measuring Range	Type J, K Thermocouple; resolution 0.05 degrees C	
	Max. Input Impedance	≤ 500 ohms for Thermocouple and cold junction sensor	
	Cold Junction Sensor Type	AD 592 CN, -26 degrees C ... +106 degrees C	
	Noise Voltage of the in put to Common	+/- 0.5 V maximum	
	Wire Size, Max.	One wire: 14 AWG	
		Two wires: 20 AWG	
I/O Map	Register 3x/4x	5 in/1 out	
A/D Conversion	Conversion Time	1.5 seconds for all 8 inputs, maximum	
	Resolution	16-bit, unipolar	
	In-range Error Limit	@ 25 degrees C ambient	$\begin{aligned} & 0.1 \% \text { of input value }+/-0.15 \\ & \text { degrees } C \end{aligned}$
		@ 0 ... 60 degrees C ambient	+ +- 0.3% of input value + /0.75 degrees C (with calibration of compensation by reference sensor input)
Noise Suppression	Common Mode Rejection	55 dB @ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 1 \mathrm{kHz}$ minimum	
Operating Temperature	$0 \ldots 60$ degrees C ($32 \ldots 140$ degrees F)		
Relative Humidity	0 ... 95\% (non-condensing) @ 60 degrees C		

Dimensions	W $\times \mathrm{H} \times \mathrm{D}$	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \times 4.5 \mathrm{in})$
	Weight	$330 \mathrm{~g} \mathrm{(.725lb)}$.
Agency Approvals	UL 508; and CSA 22.2 No.142 Standards	

Overview of the ADU 257 Analog Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the ADU 257 analog input module.

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the ADU 257 Analog Input Module?	188
ADU 257 Analog Input Module Physical Characteristics	189
Installing the ADU 257 Analog Input Module	191
ADU 257 Isolated Analog Input Module Operation	194
ADU 257 Analog Input Module Specifications	202

What is the ADU 257 Analog Input Module?

Brief Product Description

The ADU 257 is an eight-channel thermocouple or four-channel RTD input module with opto-isolation. The ADU 257 provides linearization for Thermocouples and Resistance Temperature Device inputs. The ADU 257 operates at extended temperature and has the following characteristics:

- Thermocouple types B,E,J,K,N,R,S,T are supported.
- RTD types Pt100,200,500,1000 American, Pt100,200,500,1000, and Ni100,200,500, 1000 are supported.
- 2-wire, 3-wire, 4-wire RTD connections are supported.
- Linear ranges include 0... 4000 Ohms and +/-100mV.
- 12-bit, 16-bit, 15 -bit plus sign, and 32-bit resolutions are available for all inputs.
- Both Celsius and Fahrenheit temperature units are available.
- Factory installed CJC sensors (AD592) provide ambient temperature at the ADU 257s location. The CJC sensor temperature values are stored in two $3 x$ input registers for your application needs.
- Errors noted via the Concept I/O Map Status Word.
- The module may be used in two different modes via a DIP switch -- either as an ADU 257, or as an ADU 216.

Note: The ADU 257 mode requires Concept 2.2 (or higher) panel software. The ADU 216 mode requires Modsoft 2.6.1 (or higher) panel software and the ADU 216.DAT Loadable (available on the Modicon.com website).

- Input selection and range can be set independently via the panel software.

ADU 257 Analog Input Module Physical Characteristics

Illustration

The ADU 257 can be installed in any I/O slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided.

A front view with the ADU 257 label is provided below.

LEDs The following table contains descriptions of the ADU 257 LEDs.

LED\#	LED Name	Color	Function
1	Fault	Red	Pertains to a fault: ON= Fault detected (over range, under range, broken wire) OFF=No fault detected
12	Run	Green	Pertains to the processor operation: ON=Processor operating between the ADU 257 and the PLC without fault OFF=Fault in processor operation

Block Diagram A block diagram for the ADU 257 is provided below.

Installing the ADU 257 Analog Input Module

Introduction The following procedures are necessary when installing the ADU 257:

- Set DIP switches.
- Make connections and assign input addresses.
- I/O map the module as 20-3x input registers.
- Identify overall mode of operation and type of input.

Setting Switches The module may be used in two different modes (ADU 216 or ADU 257). Switch 1 is used to set the mode. The ADU 257 is shipped with Switch 1 in the OFF position -- in ADU 257 mode.

The module may be used with broken wire detection activated or deactivated. Switch 2 is used to activate or deactivate broken wire detection. The ADU 257 is shipped with Switch 2 in the OFF position -- with broken wire detection active.
The following illustration shows the ADU 257, with both switches OFF (S1 OFF = ADU 257 mode, S2 OFF = broken wire detection activated).

DIP Switch Settings for S1 and S2:

OFF ON

- $\begin{aligned} & \text { S2 } \\ & \text { S1 } \\ & \text { Broken wire detection active=OFF or No broken wire detection=ON } \\ & \text { ADU } 257 \text { mode=OFF or ADU } 216 \text { mode=ON }\end{aligned}$
(When input is configured as 100 mV range, the broken wire detection is ALWAYS OFF)

To change to ADU 216 mode, move Switch 1 to the ON position. For details on the ADU 216 Analog Input module, refer to the chapter for that module.

Note: The ADU 257 mode requires Concept 2.2 (or higher) panel software. The ADU 216 mode requires Modsoft 2.6.1 (or higher) panel software and the ADU 216.DAT Loadable (available on the Modicon.com website).

Wiring Diagram An ADU 257 wiring diagram is provided below.

Note: The factory installed cold junction sensor located between terminals 12 and 13 may be mounted at a remote terminal for greater distances between the ADU 257 and the object of temperature measurement. Please observe correct polarity.

ADU 257 Isolated Analog Input Module Operation

Introduction

I/O Map
The ADU 257 is an eight-channel analog input module. Its field connector is wired depending on the type of input to be measured, either TC or RTD. Two connections are used per RTD; therefore, only four channels may be used. Otherwise, you have eight channels available for TC devices or linear measurements. Any of the inputs may be either TC, linear, or RTD, and any combination of the three may be used.
The module can operate in one of several modes, and the input channel ranges are individually selectable. The mode and ranges are set via the panel software. Channel input data is updated every 800 ms . When power is first applied to the module, its inputs are inactive.

The ADU 257 requires 20-3x input registers addressed in sequence, beginning with two module status $3 x$ registers, 16 data channel $3 x$ registers (channels $1 \ldots 8$), and two cold junction sensor $3 x$ registers

I/O Map Registers	Data
$3 x$	Input status word
$3 x+1$	Input status word
$3 x+2$	Input \#1 data (low word)
$3 x+3$	Input \#1 data (high word)
\ldots	\ldots
3	In
$3 x+17$	Input \#8 data (low word)
$3 x+18$	Input \#8 data (high word)
$3 x+19$	Input \#9 data (cold junction sensor) (high word)
$3 x+20$	

Conversions The following tables detail the various voltage and current conversions for the ADU 257 module.

+/-100mV Range and Data Display Format					
Millivoltage	12 bit	16 bit	15 bit + sign high resolution	IEEE 754 floating point	Range
<+102.4mV	+4095	+65535	+32767	+1.024 E02	Overrange
$\begin{aligned} & >+100 \mathrm{mV} . . . \\ & +102.4 \mathrm{mV} \end{aligned}$	+4095	+65535	+32001... +32766	$\begin{aligned} & \text { +1.0 E02... } \\ & \text { +1.024 E02 } \end{aligned}$	Pos. tolerance range
+100mV	+4095	+65535	+32000	+1.0 E02	Nominal
OmV	+2048	+32768	0	0	
-100mV	0	0	-32000	-1.0 E02	
$\begin{aligned} & \text { <-100mV... - } \\ & 102.4 \mathrm{mV} \end{aligned}$	0	0	-32001... -32766	$\begin{aligned} & \mid<-1.0 \text { E02... - } \\ & \text { 102.4 E02 } \end{aligned}$	Neg. tolerance range
<-102.4mV	0	0	-32767	-1.024 E02	Underrange

$0 . .4000 \Omega \quad 0 . .4000 \Omega$ Range and Data Display Format

Resistance	12 bit	16 bit	15 bit + sign high resolution	IEEE 754 floating point	Range
$>4095 \Omega$	+4095	+65535	+32767	+4.096 E03	Overrange
$>4000 \ldots 4095 \Omega$	+4095	+65535	$+32001 \ldots+32766$	$>+4.0$ E03 ... +4.095 E03	Pos. tolerance range
4000Ω	+4095	+65535	+32000	+4.0 E03	Nominal
0Ω	0	0	0	0	
	0	0	-2	-2.0 E00	Broken wire

IEC 751 IEC 751 Pt100,200,500,1000 -200 .. +850 C ($-328 \ldots+1562$ F) Range and Data Pt100,200,500,10 Display Format
 $00-200 . . .+850$ C

RTD	12 bit	16 bit	15 bit + sign 0.1C $(0.1 F)$	IEEE 754 floating point	Range
$>+850 \mathrm{C}(+1562 \mathrm{~F})$	+4095	+65535	$+8501(+15621)$	8.501 E02 $(1.5621$ E03 $)$	Overrange
$+850 \mathrm{C}(+1562 \mathrm{~F})$	+4095	+65535	$+8500(+15620)$	8.500 E02 (1.562 E03)	
$0(+32 F)$	+780	+12483	$0(+320)$	$0(3.20$ E01)	Nominal
$-200 \mathrm{C}(-328 \mathrm{~F})$	0	0	$-2000(-3280)$	-2.00 E02 $(-3.28$ E02)	
<-200C $(-328 \mathrm{~F})$	0	0	$-2001(-3281)$	-2.001 E02 $(-3.281$ E02)	Underrange
	0	0	$-2002(-3282)$	-2.002 E02 $(-3.282$ E02)	Broken wire

SAMA (US) SAMA (US) Pt100,200,500,1000 -200... +650 C (-328... +1112 F) Range and Data Pt100,200,500, 1000-200...
+650 C

RTD	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
>+600C (+1112F)	+4095	+65535	+6001 (+11121)	$\begin{aligned} & \text { 6.001 E02 (1.113 } \\ & \text { E03) } \end{aligned}$	Overrange
+600C (+1112F)	+4095	+65535	+6000 (+11120)	$\begin{aligned} & 6.000 \text { E02 (1.112 } \\ & \text { E03) } \end{aligned}$	Nominal
OC (+32F)	+1024	+16384	0 (+320)	0 (3.20 E01)	
-200C (-328F)	0	0	-2000 (-3280)	$\begin{aligned} & -2.00 \text { E02 }(-3.28 \\ & \mathrm{E} 02) \end{aligned}$	
<-200C (-328F)	0	0	-2001 (-3281)	$\begin{aligned} & -2.001 \text { E02 } \\ & \text { (-3.281 E02) } \end{aligned}$	Underrange
	0	0	-2002 (-3282)	$\begin{aligned} & \text {-2.002 E02 } \\ & \text { (-3.282 E02) } \end{aligned}$	Broken wire

RTD	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
>+250C (+482F)	+4095	+65535	+2501 (+4821)	$\begin{aligned} & \text { 2.501 E02 (4.821 } \\ & \text { E02) } \end{aligned}$	Overrange
+250C (+482F)	+4095	+65535	+2500 (+4820)	$\begin{aligned} & \text { 2.500 E02 (4.820 } \\ & \text { E02) } \end{aligned}$	Nominal
0C (+32F)	+793	+12684	0 (+320)	0 (3.20 E01)	
-60C (-76F)	0	0	-600 (-760)	$\begin{aligned} & -6.00 \text { E01 (-7.6 } \\ & \text { E01) } \end{aligned}$	
<-60C (-76F)	0	0	-601 (-761)	$\begin{aligned} & -6.01 \text { E01 }(-7.61 \\ & \text { E01 }) \end{aligned}$	Underrange
	0	0	-602 (-762)	$\begin{aligned} & -6.02 \text { E01 (-7.62 } \\ & \text { E01) } \end{aligned}$	Broken wire

Thermocouple Type R,S -50... +1768 C

Thermocouple Type R,S -50... +1768 C (-58 ... +3214.4 F) Range and Data Display Format

TC	12 bit	16 bit	15 bit + sign 0.1C $(0.1 \mathrm{~F})$	IEEE 754 floating point	Range
$>+1768 \mathrm{C}$ $(+3214.4 \mathrm{~F})$	+4095	+65535	$+17681(+32146)$	1.7681 E03 $(3.2146$ E03 $)$	Overrange
+1768 C $(+3214.4 \mathrm{~F})$	+4095	+65535	$+17680(+32144)$	1.7680 E03 $(3.2144 \mathrm{E02})$	
$0 \mathrm{C}(+32 \mathrm{~F})$	+113	+1802	$0(+320)$	$0(3.20$ E01)	Nominal
$-50 \mathrm{C}(-58 \mathrm{~F})$	0	0	$-500(-580)$	-5.00 E01 $(-5.80$ E01 $)$	
$<-50 \mathrm{C}(-58 \mathrm{~F})$	0	0	$-501(-582)$	-5.01 E01 (-5.82 E01)	Underrange
	0	0	$-502(-584)$	-5.02 E01 $(-5.84$ E01)	Broken wire

Thermocouple Type B +50... +1800 C

Thermocouple Type B +50.. +1800 C (+122... +3272 F) Range and Data Display Format

TC	12 bit	16 bit	15 bit + sign 0.1C $(0.1 F)$	IEEE 754 floating point	Range
$>+1800 \mathrm{C}$ $(+3272 \mathrm{~F})$	+4095	+65535	$+18001(+32722)$	1.8001 E03 $(3.2722$ E03 $)$	Overrange
$+1800 \mathrm{C}(+3272 \mathrm{~F})$	+4095	+65535	$+18000(+32720)$	1.8000 E03 $(3.2720$ E03 $)$	Nominal
$50 \mathrm{C}(+122 \mathrm{~F})$	0	0	$+500(+1220)$	5.00 E01 (1.220 E02)	
$<50 \mathrm{C}(+122 \mathrm{~F})$	0	0	$+499(+1218)$	4.99 E01 (1.218 E02)	Underrange
	0	0	$+498(+1216)$	4.98 E01 (1.216 E02)	Broken wire

Thermocouple Type J-210... +1200 C

Thermocouple Type J-210... +1200 C (-346... +2192 F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
$\begin{aligned} & \hline>+1200 C \\ & (+2192 F) \end{aligned}$	+4095	+65535	+12001 (+21922)	$\begin{aligned} & \hline 1.2001 \mathrm{E} 03 \\ & \text { (2.1922 E03) } \end{aligned}$	Overrange
+1200C (+2192F)	+4095	+65535	+12000 (+21920)	$\begin{aligned} & 1.2000 \text { E03 } \\ & (2.1920 \text { E03) } \end{aligned}$	Nominal
OC (+32F)	+610	+9761	0 (+320)	0 (3.20 E01)	
-210C (-346F)	0	0	-2100 (-3460)	$\begin{aligned} & -2.100 \text { E02 } \\ & (-3.460 \text { E02 }) \end{aligned}$	
<-210C (-346F)	0	0	-2101 (-3462)	$\begin{aligned} & -2.101 \text { E02 } \\ & \text { (-3.462 E02) } \end{aligned}$	Underrange
	0	0	-2102 (-3464)	$\begin{aligned} & -2.102 \text { E02 } \\ & (-3.464 \text { E02) } \end{aligned}$	Broken wire

Thermocouple Type T-270... +400 C

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
>+400C (+752F)	+4095	+65535	+4001 (+7522)	$\begin{aligned} & \text { 4.001 E02 (7.522 } \\ & \text { E02) } \end{aligned}$	Overrange
+400C (+752F)	+4095	+65535	+4000 (+7520)	$\begin{aligned} & \text { 4.000 E02 (7.520 } \\ & \text { E02) } \end{aligned}$	Nominal
0C (+32F)	+1650	+26410	0 (+320)	0 (3.20 E01)	
-270C (-454F)	0	0	-2700 (-4540)	$\begin{aligned} & \text {-2.700 E02 } \\ & \text { (-4.540 E02) } \end{aligned}$	
<-270C (-454F)	0	0	-2701 (-4542)	$\begin{aligned} & \text {-2.701 E02 } \\ & \text { (-4.542 E02) } \end{aligned}$	Underrange
	0	0	-2702 (-4544)	$\begin{aligned} & \text {-2.702 E02 } \\ & \text { (-4.544 E02) } \end{aligned}$	Broken wire

Thermocouple Thermocouple Type E $-270 \ldots+1000$ C ($-454 \ldots+1832$ F) Range and Data Display Type E-270... +1000 C

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
$\begin{aligned} & >+1000 \mathrm{C} \\ & (+1832 F) \end{aligned}$	+4095	+65535	+10001 (+18322)	$\begin{array}{\|l\|} \hline 1.0001 \mathrm{E} 03 \\ (1.8322 \mathrm{E} 03) \end{array}$	Overrange
+1000C (+1832F)	+4095	+65535	+1000 (+18320)	$\begin{aligned} & \hline 1.0000 \mathrm{E} 03 \\ & (1.8320 \mathrm{E} 03) \end{aligned}$	Nominal
0C (+32F)	+871	+13933	0 (+320)	0 (3.20 E01)	
-270C (-454F)	0	0	-2700 (-4540)	$\begin{aligned} & -2.700 \text { E02 } \\ & (-4.540 \text { E02 }) \end{aligned}$	
<-270C (-454F)	0	0	-2701 (-4542)	$\begin{aligned} & -2.701 \text { E02 } \\ & \text { (-4.542 E02) } \end{aligned}$	Underrange
	0	0	-2702 (-4544)	$\begin{aligned} & \text {-2.702 E02 } \\ & \text { (-4.544 E02) } \end{aligned}$	Broken wire

Thermocouple Type K -270... +1372 C

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
$\begin{aligned} & >+1372 \mathrm{C} \\ & (+2501.6 \mathrm{~F}) \end{aligned}$	+4095	+65535	+13721 (+25018)	$\begin{aligned} & \hline 1.3721 \mathrm{E} 03 \\ & \text { (2.5018 E03) } \end{aligned}$	Overrange
$\begin{aligned} & +1372 \mathrm{C} \\ & (+2501.6 \mathrm{~F}) \end{aligned}$	+4095	+65535	+13720 (+25016)	$\begin{aligned} & \hline 1.3720 \mathrm{E} 03 \\ & (2.5016 \mathrm{E} 03) \end{aligned}$	Nominal
0C (+32F)	+673	+10776	0 (+320)	0 (3.20 E01)	
-270C (-454F)	0	0	-2700 (-4540)	$\begin{aligned} & \text {-2.700 E02 } \\ & \text { (-4.540 E02) } \end{aligned}$	
<-270C (-454F)	0	0	-2701 (-4542)	$\begin{aligned} & \hline-2.701 \text { E02 } \\ & (-4.542 \text { E02 }) \end{aligned}$	Underrange
	0	0	-2702 (-4544)	$\begin{aligned} & -2.702 \text { E02 } \\ & \text { (-4.544 E02) } \end{aligned}$	Broken wire

Thermocouple Thermocouple Type N-270... +1300 C (-454... +2372 F) Range and Data Display Type N-270... +1300 C

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit }+\operatorname{sign} 0.1 \mathrm{C} \\ & (0.1 \mathrm{~F}) \end{aligned}$	IEEE 754 floating point	Range
$\begin{aligned} & >+1300 C \\ & (+2372 F) \end{aligned}$	+4095	+65535	+13001 (+23722)	$\begin{array}{\|l\|} \hline 1.3001 \mathrm{E03} \\ \text { (2.3722 E03) } \end{array}$	Overrange
+1300C (+2372F)	+4095	+65535	+13000 (+23720)	$\begin{aligned} & \hline 1.3000 \mathrm{EO3} \\ & \text { (2.3720 E03) } \end{aligned}$	Nominal
0C (+32F)	+704	+11270	0 (+320)	0 (3.20 E01)	
-270C (-454F)	0	0	-2700 (-4540)	$\begin{aligned} & -2.700 \text { E02 } \\ & (-4.540 \text { E02 }) \end{aligned}$	
<-270C (-454F)	0	0	-2701 (-4542)	$\begin{aligned} & -2.701 \mathrm{E} 02 \\ & (-4.542 \mathrm{E} 02) \end{aligned}$	Underrange
	0	0	-2702 (-4544)	$\begin{array}{\|l} \hline-2.702 \mathrm{E} 02 \\ \text { (-4.544 E02) } \end{array}$	Broken wire

Cold Junction Cold Junction Sensor AD592 -25... +105 C (-13... +221 F) Range and Data Display Sensor AD592 - Format
25... +105 C

CJC	12 bit	16 bit	15 bit + sign 0.1C $(0.1 \mathrm{~F})$	IEEE 754 floating point	Range
$>+125 \mathrm{C}(+257 \mathrm{~F})$	+4095	+65535	$+1051(+2212)$	1.051 E02 (2.212 E02)	Overrange
$+125 \mathrm{C}(+257 \mathrm{~F})$	+4095	+65535	$+1050(+2210)$	1.050 E02 (2.210 E02 $)$	
0C (+32F)	+683	+10923	$0(+320)$	$0(3.20$ E01)	Nominal
$-25 \mathrm{C}(-13 \mathrm{~F})$	0	0	$-250(-130)$	-2.50 E01 (-1.30 E01)	
$<-25 \mathrm{C}(-13 \mathrm{~F})$	0	0	$-251(-132)$	-2.51 E01 $(-1.32$ E01)	Underrange
	0	0	$-252(-134)$	-2.52 E01 (-1.34 E01)	Broken wire

ADU 257 Analog Input Module Specifications

Table of Specifications

The following table contains a list of ADU 257 specifications.

Module Topology	Number of channels	8 TC, 4 RTD
	Data Format	TC, RTD, mV linear, Ohms linear inputs
	Isolation test voltage channel to channel	400Vdc maximum via solid state relays
	Isolation test voltage channel to bus	500Vac maximum
	Isolation test voltage channel to earth	500Vac maximum
Power Supply	Internal Source (from I/O bus)	5VIO; 120mA typical
I/O Map	Register 3x/4x	$20 \mathrm{in} / 0$ out
TC Inputs	TC types	B,E,J,K,N,R,S,T
	Linear Measuring Range	+/-100mV
	CJC sensor	Factory installed reference sensor to terminals 12 and 13
	Cold junction sensor type (factory installed)	AD 592 CN, - 26 degrees C ... +106 degrees C
	Overload protection	+30Vdc continuously
	Resolution	12Bits, 16Bits, 15Bits plus sign, 32Bits
	Accuracy for TC ranges @ 0 ... 60 degrees C , includes CJC, offset, gain error	For J,K,N,E,T types: +/-2 degrees $\mathrm{C}+/-0.1$ percent of reading ($+/-1.5$ degrees C for temp. less than 100) (assumes no delta between CJC and CJ sensor)
	Accuracy for TC ranges @ 0 ... 60 degrees C , includes CJC, offset, gain error	For S,R,B types: +/-4 degrees C +/-0.1 percent of reading (assumes no delta between CJC and CJ sensor)

RTD Inputs	RTD types	
	Linear Measuring Range	0 ... 4000 ohms
	Overload protection	+30Vdc continuously
	Resolution	12Bits, 16Bits, 15Bits plus sign, 32Bits
	Accuracy for RTD ranges @ 25 degrees C ambient temperature	0.5 degrees C
	Accuracy for RTD ranges @ 60 degrees C ambient temperature	0.9 degrees C
	Derating of accuracy for -25 ... +70 degrees C	1.25C
Dynamic Characteristics of Inputs	Conversion time for all inputs	800mS maximum
	Interference voltage suppression (main suppression) for $\mathrm{f}=\mathrm{nx} \times 50$ or 60 Hz	$\mathrm{n}=1,2 \ldots$
	Common-mode rejection	less than 110dB
Physical Characteristics	Format	1 slot
	Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm} \\ & 1.6 \times 5.6 \times 4.5 \mathrm{in} \end{aligned}$
	Weight	$320 \mathrm{~g}, 0.710 \mathrm{lb}$
	Wire Size	1-14AWG, 2-20AWG
Environmental Characteristics	Operating Temperature	$-40 \ldots+70$ degrees C
Agency Approvals	ADU 257: VDE 0160; UL 508; CSA 22.2 No.142; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, p. 857) Standards	
	ADU 257C: VDE 0160; UL 508; CSA 22.2 No.142; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, p. 857) Standards	

AS-BDEA 203 Profibus-DP Coupler Module Description

10

At a Glance

Overview This chapter describes the AS-BDEA Profibus-DP Coupler Module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Configuration	206
Features and Functions	210
Diagnosis	213
Technical Specifications	214

Configuration

Overview

Settings (Slave
Address, Disconnection Behavior)

To configure the AS-BDEA the following tasks must be performed

Slave Address-The slave address (node address) is to be set on the front panel "x10, x1" rotary switches. Addresses from $1 . . .99$ are allowed ($0=$ as shipped).
Disconnection Behavior- See the following figure for disconnection behavior. Switches S0 and S1are meaningless

S3 Firmware Standard*
S2
S1
SO

* As shipped

-

I/O Expansion Limitations

Arbitrary I/O combinations are only possible with discrete I/O modules. Use of analog I/O modules restricts total data volume to a particular level. Total data volume is the sum of data from the PROFIBUS master to the AS-BDEA 203 (D out), and from the AS-BDEA 203 to the PROFIBUS master (D in). The feasibility of a particular combination can be verified with the followingtables. The first table lists data volume by respective module (D out / $D \mathrm{in}$) in bytes. The data volume of all employed modules through the AS-BDEA 203 to the PROFIBUS master (D in sums) must </= 244 bytes .
In accordance with the (D in) data volume, this table permits the data volume calculation for PROFIBUS master to AS-BDEA 203 (D out). With the second table the (D out) data volumes of all employed modules is to be checked against the max. permissible (D out) data volume.
Data volume by module

Module	D In Data Volume (Bytes	D Out Data Volume (Bytes
DEP 208, DEP 210, DEP 211	1	0
DAP 204, DAP 208, DAP 210	0	1
DAP 212, DAP 220, DAP 292	1	1
DEO 216, DEP 214, DEP 215, DEP 216, DEP 217, DEP 218, DEP 220, DEP 296, DEP 297, DEX 216	2	0
DAO 216, DAP 216, DAP 217, DAP 218, DAX 216	0	2
DAU 202	0	4
DAU 208	0	16
ADU 204, ADU 205	10	0
ADU 206,ADU 216	10	1
ADU 210	10	4
ADU 214	18	8

Max permissible "D Out" data volume in respect to "D In" data volume.

Data In Data volume Sums (Bytes)	Max Data Out Volume Sums (Bytes)
$241 \ldots 244$	144
$233 \ldots 240$	152
$225 \ldots 232$	160
$217 \ldots 224$	168
$209 \ldots 216$	176
$0 \ldots 208$	184

Subtrack Mounting Slot

Power Supply Connection

Enter system relevant power supply information in the label inlay.Noise immunity can be improved when by-pass capacitors are installed at the power supply module U and M terminals.

\triangle CAUTION
 The module's integrated power supply is non-isolated. Improper connection, e.g. absence of the M2 connection, can lead to module destruction.
 Failure to follow this instruction can result in injury or equipment damage.

Enter system relevant power supply information in the label inlay. Noise immunity can be improved when by-pass capacitors are installed at the power supply module U and M terminals.

Profibus Connection

The PROFIBUS port utilizes varied Sub-D9 plug connectors:

- 490 NAD 91102 for transmission rates up to 12 Mbps.
- PBS1 for transmission rates up to 500 kbps .

The individual installation steps are to be carried out in adherence with the accompanying user documentation.

50	Pin	Signal	Function
0	3	RxD/TxD-P	Receive/transmit data (+)
40	5	DGND	Signal ground
-	6	VP	+5 VDC supply
	8	RxD/TxD-N	Receive/transmit data negated (-)
20			

O N/C

Features and Functions

The AS-BDEA 203 is a PROFIBUS-DP coupling module adhering to DIN 19245 Parts 1 and 3 with integrated (non-isolated) power supply. It is used to drive the remote I/O modules of the Modicon TSX Compact family. It provides a 5 VDC supply at 1.6 A for the modules on the parallel I / O bus.

The AS-BDEA 203 can address a maximum of 18 I/O modules (288 I/Os) via the subracks DTA 200, DTA 201 or DTA 202. With the exception of intelligent modules, all analog and discrete Compact I/O modules can be employed. When analog modules are utilized, there is a particular total data volume which may not be exceeded.

The device master data file from the 381 SWA 00000 diskette must be utilized for AS-BDEA 203 configuration.

Features

Functional Details

- Standardized, isolated PROFIBUS Port
- Transmission rates of up to 12 Mbps
- Automatic adaptation to master transmission rate setting
- Slave address adjustment per rotary switch
- DIP switch adjustment of disconnection behavior

The AS-BDEA 203 serves as the coupling element between the PROFIBUS-DP and the internal I/O bus.

The set disconnection behavior is activated by watchdog when PROFIBUS communication is interrupted longer then the supervision time set by the master. The AS-BDEA 203 collects messages from the associated modules and reports these further to the master as diagnostic information.

Diagnosis

Overview The module front plate contains the following displays:

No	Label Inlay Identifier	Color	Function
18 (left)	U	Green	24 VDC supply prsent
19 (left)	ready 5V	Green	module ready for service, 5VDC output voltage present
3 (right)	ready	Green	Coupler ready
4 (right)	BF	Red	Bus coupling faulty (bus failure), Probable cause: The AS-BDEA is not parameterized and in-itialized, the PROFIBUS-DP protocol is not running

Technical Specifications

AS-BDEA 203 Technical specifications for the AS-BDEA 203.
Assignment

System	TSX Compact (A120, 984)
Module Area	Slot 0 of DTA 200 primary backplane
Identicode	Hex A203, entry through the device master data file type 381 SWA 000 00

Power Supply

External input voltage	UB $=24$ VDC, max. 0.85 A
Primary fusing	1.25 A medium time-lag fuse
Power on current	20 A, time constant $=1 \mathrm{~ms}$
Tolerances, limiting values	Refer to the TSX Compact User Manual, "Technical Specifications"
Reference potential M	M2
Protective earth	PE
Secondary voltage	5.15 VDC, max. 1.6 A, non-isolated
Buffering time	Typically 5 ms for 24 VDC
Overload protection	Through current limiting

Data Interface

Profibus-DP	Through a potential-free RS-485 interface up to 12 Mbps
Pin assignments	Refer to PROFIBUS Connection Figure
Back plane	Parallel I/O bus, refer to TSX Compact User Manual, "Technical Specifications"

Processor

Processor type	Intel $80 \mathrm{C} 152 / 12 \mathrm{MHz}$
Data memory	32 KB RAM
Firmware	64 KB EPROM

Mechanical Design

Module	Standard double-size module
Format	$3 \mathrm{HE}, 16 \mathrm{~T}$
Weight	Approx. 500 g

Connection Styles

Power Supply	5-pole screw/plug-in terminal block
Profibus	Sub-D9 socket, matching to 490 NAD 911
Back plane	2 plug connectors $1 / 3$ C30M, 1 socket connector 1/3 R30F

Environmental Characteristics

Regulations	Meets VDE 0160, UL 508
System data	Refer to TSX Compact User Manual, "Technical Specifica- tions"
Permissible ambient temperatures	$0 \ldots+60$ degrees C.
Power dissipation	Typically 6 W

Profibus- DP

Specifications for the AS-BDEA 203 on the Profibus-DP.
Transmission Specifications

Nodes per bus	Max. 32
Bus lengths, transmission rates	\bullet max 1.2 km at 9.6 kbps or at 19.2 Kbps or at 93.75 Kbs \bullet • max 0.5 km at 187.5 Kbps \bullet max 0.2 r at 1.5 Kbps • max 0.1 km at 3 Mbps or at 6 Mbps or at 12 Mbps rigid
Bulk transmission media	Shielded twisted pair (S-UTP)KAP PROFIB, PROFIBUS cable up to 12 Mbps, rigid
Connection interface	Adhering to EIA RS-485
Cable termination	As per Norm 390 / $220 / 390 \mathrm{~W}$
Stub cabling	None
Data security	Hamming distance, HD = 4

Bus Specifications

Node type	Slave
Node Addresses	$1 \ldots 99$

Operation

DP Bus Byte Output	Output reference 0x (Boolean, packed Output Reference 4x (Integer8, unpacked; Unsigned8, un- packed;RAW, packed e.g. ASCII)
DP Bus Byte Input	Input Reference 1x (Boolean, packed) Input Reference 3x (Integer8, unpacked; Unsigned8, un- packed; RAW, packed e.g. ASCII)
Bus Word Output	Output Reference 0x (Boolean) Output Reference 4x (Integer16 = Unsigned16 = RAW)
Bus Word Input	Input Reference 1x (Boolean) Input Reference 3x (Integer16 = Unsigned16 = RAW)

BKF 201 (16W) \& (64W) InterBus S Master Module

At a Glance

Introduction The information in this chapter describes the BKF 201 (16W) \& (64W) InterBus S Master Module.

What's in this This chapter contains the following topics: Chapter?

Topic	Page
What Is the BKF 201 (16W) \& (64W) InterBus S Master Module?	218
Physical Characteristics of the BKF 201 (16W) \& (64W) InterBus S Master Module	219
Switch Settings for the BKF 201	222
Installation of the BKF 201 (16W) \& (64W) Interbus Master Module	223
Operation of the BKF 201 Master Module: I/O Map	226
Example of Hardware and I/O Mapping for the BKF 201	233
Specifications	234

What Is the BKF 201 (16W) \& (64W) InterBus S Master Module?

Brief Product Description

The BKF 201 links the Compact PLC and the Remote bus nodes. The following lists describes the key features of the BKF 201:

- Up to 63 3x input register and 63 4x output register data words can be addressed for a total of 126 TIOs (63 input TIOs and 63 output TIOs), with 16 Bits each within an Interbus frame
- Supports up to 15 BKF 201 modules in the BKF 201 (16) (Ident Code 92) mode or up to 3 BKF 201 modules in the BKF 201 (64) (Indent Code 93) mode
- Use and Programming for the BKF 201 is done via the RS 232C-port of the PLC, therefore saving a port on the BKF 201
- All outputs are automatically set to 0 (zero) upon detection of configuration errors or other bus problems
- A restart can be performed manually or automatically after error correction
- Changes to the Interbus S configuration are easy (Fast "Plug and Play")
- Monitoring of the module using a watchdog function
- Mode settings using two DIP switches
- The Interbus S status is shown via the modules LEDs

Interbus loop nodes are not supported.
Modules with Peripheral Communication Protocol (PCP) Channel (1, 2, and 4 PCP words within the Interbus loop) can be used in the BKF 201. However, the BKF 201 does not support the PCP Channel.

Note: Interbus loop nodes are not supported.

Note: Modbus with Peripheral Communication Protocol (PCP) Channel (1, 2, and 4 PCP words within the Interbus loop) can be used in the BKF 201. However, the BKF 201 does not support the PCP Channel.

Physical Characteristics of the BKF 201 (16W) \& (64W) InterBus S Master Module

Overview

Front View and Label

The following information describes the physical characteristics of the BKF 201.

The following figure shows the front view of the BKF 201 and the label.

BKF 201
ready

IBS ready
IBS run
IBS error
module error
config. error

error 1
error 2
error 4
error 8
error 10
error 20
error 40
error 80
card

LEDs The following table describes the BKF 201 LED displays.

LED \#	LED Name	Color	Function
1	ready	Green	Module ready for service
3	IBS ready	Green	Interbus ready for service
4	IBS run	Green	Interbus transmission active
5	IBS error	Red	Interbus transmission error
6	Module error	Red	Module error (on Interbus slave device)
7	config. error	Red	The configuration changed during operation, or an error occurred during loading of the configuration.
$\begin{aligned} & \hline 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	error 1 error 2 error 4 error 8 error 10 error 20 error 40 error 80	Red	Displays the physical number of the Interbus node with error condition (BCD, Node \# = sum of error numbers displayed).* See also, the Front View and Label, p. 219. No display: Neither error nor node number can be found.

Note: *For example, if device\#6 (node\#6) has a error condition LED\#15 (error 2) and LED\#16 (error 4) turn red. Add the two together (error $2+$ error 4=6). This indicates that the error condition pertains to device\#6 (node\#6).

Block Diagram of The following figure describes the architecture of the BKF 201. the BKF 201

Switch Settings for the BKF 201

Operating Mode The following figure shows the DIP Switch Settings for the operating mode. The

 switches are located on the rear of the BKF 201.

DIP Switch Setting for S0 and S1:

| | Ident-
 OFF ON
 Code | Module
 reserved | 3x Input
 words
 reserved | 4x Output
 words
 reserved |
| :--- | :--- | :--- | :--- | :--- | | Programming |
| :--- |
| with |

$\square \square$ S1 not used (default settings for field testing by manufacturer only)

Installation of the BKF 201 (16W) \& (64W) Interbus Master Module

Overview The following information describes how to install the BKF 201.
Operating Mode If the operating mode for the BKF 201 module is set to BKF 201 (16) (Indent Code 92), the module can reside in any I/O slot in any backplane (DTA 201 or DTA 202). In contrast, if the operating mode for the BKF 201 module is set to BKF 201 (64) (Indent Code 93), the module can reside only in an I/O slot in the primary backplane (DTA 200).

Interbus Connection

Refer to the Interbus S Quantum 140 NOA 61100 User Manual
(P/N 840 USE 419 00).
The following diagram shows the pin assignments as viewed from the solder side. Interbus remote bus

- Pin present

O No pin present

The following table shows the pinout assignments.

Socket	Signal	Function
1	DO	Transmit data $(+)$
2	DI	Receive data $(+)$
3	GND	Reference ground
5	5 V Out	For Fiber Optic Interface
6	DO	Transmit data $(-)$
7	DI	Receive data $(-)$

Note: When using branch interfaces, it is not possible to group and to handle errors (that is, turning off the branch in case of error).
For example, a branch interface is useful when using a fiber-optic interface because most slaves do not provide power for this type of interface. Additionally, a branch interface is required to connect slaves to peripheral buses, or to install remote buses.

Hardware Configuration of the BKF 201

The following figure illustrates an example BKF 201 hardware layout showing nodes.

Operation of the BKF 201 Master Module: I/O Map

BKF 201(16) Operating Mode

BKF 201(64)
Operating Mode

The BKF 201(16) (Ident Code 92) module requires a total of $163 x$ input registers and a total of $164 x$ output registers. The first $3 x$ input register is the Status Word and the following $3 x$ input registers are Data Words starting with $3 x+1$ and ending with $3 x+15$. The first $4 x$ output register is the Control Word and the following $4 x$ output registers are Data Words starting with $4 x+1$ and ending with $4 x+15$. Refer to the other information in this map.

The BKF 201(64) (Ident Code 93) module requires a total of $643 x$ input registers and a total of $644 x$ output registers. The first $3 x$ input register is the Status Word and the following $3 x$ input registers are Data Words starting with $3 x+1$ and ending with $3 x+63$. The first $4 x$ output register is the Control Word and the following $4 x$ output registers are Data Words starting with $4 x+1$ and ending with $4 x+63$. Refer to the other information in this map.

The following table describes the 3x Input Registers (1 3x Status Word \& Up to 15 3x Data Words) or ($13 x$ Status Word \& Up to 63 3x Data Words).

State RAM	Bit 15-8	Bit 7-5	Bit 4-0
3xxxxx (Status Word)	Config. Checksum; see 3x Configuration Checksum Byte Structure (High Byte), p. 227	0 not used	Status; see 3x Configuration Checksum Byte Structure (High Byte), p. 227
$3 x x x x x+1$	Process data - Input word 1		
$3 x x x x x+2$	Process data - Input word 2		

3x Configuration The following table describes the $3 x$ Status Word, High Byte for Configuration Checksum Byte Checksum Error \#. For information about the meanings of the LEDs, see LEDs, Structure (High Byte)
p. 220.

| Bit
 $\mathbf{1 5}$ | Bit
 $\mathbf{1 4}$ | Bit
 $\mathbf{1 3}$ | Bit
 $\mathbf{1 2}$ | Bit
 $\mathbf{1 1}$ | Bit
 $\mathbf{1 0}$ | Bit 9 | Bit 8 | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 8 | 4 | 2 | 1 | Decimal value of block 1 (max.
 9), same meaning as LEDs \#14
 $\ldots . \# 17$ |
| 80 | 40 | 20 | 10 | | | | | Decimal value of block 2 (max.
 $90)$, same meaning as LEDs
 \#18 ... \#21 |

Note: For example, if device\#6 (node\#6) has a error condition, LED\#15 (error 2) and LED\#16 (error 4) turn red. Add the two together (error $2+$ error 4=6). This indicates that the error condition pertains to device\#6 (node\#6).

3x Status Byte Structure (Low Byte)

The following table describes the $3 x$ Status Word, Low Byte for Status. For information about the meanings of the LEDs, see LEDs, p. 220.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Bit 4 } & \text { Bit 3 } & \text { Bit 2 } & \text { Bit 1 } & \text { Bit 0 } & \text { Function } \\ \hline & & & & 1 & \begin{array}{l}\text { "IBS ready" } \\ \text { (same meaning as LED\#3) Interbus ready to use } \\ \text { (no "IBS error" or "config. error") }\end{array} \\ \hline & & & 1 & & \begin{array}{l}\text { "IBS run" } \\ \text { (same meaning as LED\#4) Process data } \\ \text { exchange on the Interbus }\end{array} \\ \hline & 1 & 1 & & & \begin{array}{l}\text { "IBS error" } \\ \text { (same meaning as LED\#5)A bus error occurred. } \\ \text { Possible causes: Broken cable, short circuit, a } \\ \text { node lost power, data transfer was interrupted. In } \\ \text { case of a permanent interruption, the BKF will } \\ \text { trace the node, which was interrupted. }\end{array} \\ \hline 1 & & & & & \begin{array}{l}\text { "Module error" } \\ \text { (same meaning as LED\#6) Module error of a } \\ \text { node (slave). Current error does not stop the } \\ \text { Interbus. }\end{array} \\ \hline & & & & & \begin{array}{l}\text { "config. error" } \\ \text { (same meaning as LED\#7) Interbus configuration } \\ \text { error. Possible causes: The configuration could } \\ \text { not be determined after power-on of the BKF 201 } \\ \text { (nodenot ready for operation, cabling wrong, etc.) }\end{array} \\ \text { The configuration was changed during operation. } \\ \text { An example would be the removal of a node. The } \\ \text { standard configuration checksum does not } \\ \text { concur with the actual configuration checksum, } \\ \text { when Bit 6 was set in the control byte. }\end{array}\right\}$

4x Output Registers

4x Standard Configuration Checksum Byte Structure (High Byte)

The following table describes the $4 x$ Output Registers ($14 x$ Control Word and up to $154 x$ or ($14 x$ Control Word \& up to $634 x$ Data Words).

State RAM	Bit 15-8	Bit 7-0
$4 x x x x x$ (Control Word)	Config. Checksum; see 4x Control Byte Structure (Low Byte), p. 230	Status; see 4x Control Byte Structure (Low Byte), p. 230
$4 x x x x x+1$	Process data - Input word 1	
$4 x x x x x+2$	Process data - Input word 2	
$4 x x x x x+3$	Process data - Input word 3	
$4 x x x x x+4$	Process data - Input word 4	
$:$	$:$	
$4 x x x x x+15$ BKF201 (16)	Process data - Input word 15 BKF201 (16) mode	
$:$	$:$	
$:$	$:$	
$4 x x x x x+63$ BKF201 (64)	Process data - Input word 63 BKF201 (64) mode	

The following table describes the 4 x Control Word, High Byte for Configuration Checksum.

Bit 15	Bit 14	Bit 13	Bit 12		Bit 11	Bit 10	Bit 9	Bit 8	Function
x	x	x	x	x	x	x	x	Enter your bus configuration checksum returned by the BKF 201 upon initialization into this register and set Bit $6=1$ (check config.) in (4x control word low byte) to compare configuration input (3x status config. check sum, high byte) to (4x control word low byte check sum). When they do not match Bit 4 (config. error) results in (3x status low byte).	

4x Control Byte Structure (Low Byte)

The following table shows the 4X Control Word, Low Byte for Control.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Function
								0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Function
							"get-configuration" Determine new Interbus configuration. This is useful, if for example a node is removed/ added to the Bus, meaning Bit 4 of status byte (config. error) $=1$. When checking for a new configuration, all other bits must be $=0$, except you must set Bit 3=1.	
1								

Show
 Configuration

The following table is an example using the show configuration feature. This function is available only if the $4 x$ control word bits are set as follows: Bit $7=1$ (show configuration), Bit $1=0$ (alarm-stop), Bit $2=0$ (start-cycle)

State RAM	Bit 15-8	Bit 7-5	Bit 4-0
3xxxxx (Status Word)	Config. Checksum; see $3 x$ Status Byte Structure (Low Byte), p. 228	(not used)	Status; see 3x Status Byte Structure (Low Byte), p. 228
$3 x x x x x+1$	0		Number of IBS nodes (slaves)
$3 x x x x x+2$	Number of process 3x input data words		Number of process $4 x$ input data words
$3 x x x x x+3$	Number of process data words of slave 1		Ident code of slave 1
$3 x x x x x+4$	Number of process data words of slave 2		Ident code of slave 2
:	:		.
$\begin{aligned} & \text { 3xxxxx + } \\ & \text { 15BKF201 (16) } \end{aligned}$	Number of process data words of slave 13		Ident code of slave 13
:	:		:
:	:		:
$\begin{aligned} & 3 x x x x x+ \\ & \text { 15BKF201 (64) } \end{aligned}$	Number of process data words of slave 61		Ident code of slave 61

Note: The number of process data words also includes the Peripheral Communication Protocol (PCP) communication words, if slaves with PCP Channel are used. Unlike other Interbus masters, these PCP communication words are also reflected in the signal memory.

Example of Hardware and I/O Mapping for the BKF 201

BKF 201 Module
Using TIO
Modules as Nodes

This is an example of how to use three TIO modules as nodes off the BKF 201 module. Notice the correlation between the hardware and I/O mapping structure shown in the tables that follow the figure.

The following tables show the data structure of the $3 x$ input registers and $4 x$ output registers, as well as the hardware configuration for the three TIO devices/nodes shown in the figure.

The following table describes the $3 x$ Input I/O Mapping Presentation.

Config. -checksum	Status byte
Inputs $1 \ldots 16$ of node 1	
Inputs $1 \ldots 16$ of node 3	

The following table describes the 4 x Output I/O Mapping Presentation.

Stand. config. -checksum	Control byte
Outputs $1 \ldots 16$ of node 1	
Outputs $1 \ldots 16$ of node 2	

Specifications

Specifications The following table lists specifications for the BKF 201 (16W) \& (64W) InterBus S

 Master Module.| Power supply | |
| :--- | :--- |
| Internally through I/O-Bus | 5VDC I/O Bus, 190mA typically, 250mA max. (w/o fiber-
 optic Interface) |
| Data Interface | |
| Field bus | as RS 485 port, non-isolated (150Onm) |
| Processor | Dallas 80C320 / 32 MHz |
| Processor type | 32KB RAM |
| Data memory | 64 KB EPROM |
| Firmware | |
| I/O Map | 16 in/16 out BKF-201 (16W) |
| Register 3x/4x | 64 in/64 out BKF-201 (64W) |
| Physical Structure | Standard-size module |
| Module | I Slot |
| Format | 210 g |
| Weight | |
| Type of Connection | Sub-D9 socket (9 pins) |
| Remote bus | Plug connector1/3 C30M |
| Backplane | |
| Environmental Characteristics | |
| Regulations | VDE 0160, UL 508 |
| Power dissipation | 1.3 W max., typically 1W |

BKF 202 InterBus S Slave Module

12

At a Glance

Introduction The purpose of this chapter is to describe the BKF 202 InterBus S slave Module.
What's in this
This chapter contains the following topics:

Topic	Page
What Is the BKF 202 InterBus S Slave Module?	236
Physical Characteristics of the BKF 202 InterBus S Slave Module	237
Switch Settings for the BKF 202 InterBus S Slave Module	240
Installation of the BKF 202 InterBus S Slave Module	241
Operation of the BKF 202 InterBus S Slave Module	244
Specifications of the BKF 202 InterBus S Slave Module	247

What Is the BKF 202 InterBus S Slave Module?

Brief Product Description

The BKF 202 links the Compact PLC and the Remote Bus nodes. The following list describes the key features of the BKF 201:

- Up to $153 x$ input register and up to $154 x$ output register data words can be exchanged with an Interbus S master.
- Monitoring of the module using a watchdog function.
- Mode settings using a rotary switch and two DIP switches.
- The Interbus S status is shown via the module's LEDs.
- Supports up to 15 BKF 202 modules in the BKF 202 (Indent Code 94) mode.

Note: The BKF 202 module does not support Peripheral Communication Protocol (PCP) channels.

Physical Characteristics of the BKF 202 InterBus S Slave Module

Overview

Front View and Label

The following information describes the physical characteristics of the BKF 202.

The following figure shows the front view of the BKF 202 and the label.

LED Displays The following table describes the LED displays for the BKF 202.

LED \#	LED Name	Color	Function
1	READY	Green	Operating mode on: Current power for internal logic within the allowable range and the module has not been reset to mode off: Current power missing or outside of the allowable range, or module has been reset
3	BA	Green	bus active on: Data telegrams are transmitted off: Data telegrams are not transmitted
4	RC	Green	Remote Bus Check on: incoming remote bus connection is correct and the Bus Reset of the Busmaster is inactive off. incoming remote bus connection is wrong/ not corrected or the Bus Reset of the Bus Reset of the Busmaster is active
5	RD	Red	Remote Bus Disabled on: Extended remote bus is switched off off: Extended remote bus is not turned off

Block Diagram of The following block diagram provides an overview of the BKF 202 architecture. the BKF 202

Switch Settings for the BKF 202 InterBus S Slave Module

Operating Mode The following figure shows the Rotary Switch settings and the Dip Switch settings for the operating mode. The switches are located on the rear of the BKF 202.

Rotary Switch Settings for S2:
Switch position Number of words
12 words
24 words
36 words
48 words
$5 \quad 10$ words
$6 \quad 12$ words
$7 \quad 14$ words
$8 \quad 16$ words (15 data words)
9 not used
0 not used

DIP Switch Setting for S0 and S1:

Installation of the BKF 202 InterBus S Slave Module

Overview

Interbus
Connection

The following information describes how to install the BKF 202.

The BKF 202 modules located at the inline sites on the Interbus remote bus cable have two connections. One connection is for the incoming bus cable; the other is for the outgoing bus cable. BKF 202 modules located at the end sites on the network cable have only one connection. This is for the incoming bus cable.

You should have a complete cabling diagram for your network installation, showing the cable routing path and methods of securing the cables. It should identify incoming and outgoing cables at each BKF 202 module site.

Pin Placements The following figure shows the pin placements as viewed from the solder side.

Sub-D9 Port "in" (top)

Sub-D9 Port "out" (bottom)

Pin Signal Meaning

1	DO	Transmit data (+)
2	DI	Transmit data (+)
3,4	GND	reference ground
5,8		(5 V Out) for Opto. Sub.
6	DO	Transmit data (-)
7	DI	Receive data $(-)$
9^{\star}	RBST	Plug identifier

*) incoming remote bus = not used

- Pin present

O No pin present

Cabling

Modicon provides two prefabricated Interbus cables (170 MCI 101 00, 1m, 39 inches) and ($170 \mathrm{MCl} 00700,11.5 \mathrm{~cm}, 4.5$ inches). Each cable has two connectors for direct interconnection between two modules. Modicon also provides a connector kit (170 XTS 00900) for use with user supplied cables. The kit contains one pin and one socket connector.

Please note the following general requirements.

- The maximum remote bus cable length is 13 km (8 mi.$)$. The cable length between two remote bus nodes must not exceed 400 m (1200 ft).
- The connectors for the outgoing bus are always pins, those for the incoming remote bus are always sockets.
- Connect the cable shield to the connector.
- You need a 5 wire cable, twisted pair type, shielded cable for the remote bus. We recommend a Belden 8103 cable or equivalen; this cable is available by the meter (KAB 3225 LI).
Wire the connectors of the remote bus cable as shown in the following figure.

Outgoing Remote Bus (pins)
Incoming Remote Bus (sockets)

The following tables show the pinouts for the Interbus cable construction. The information in the first table describes pinouts for an outgoing remote bus connection; the second table describes the pinouts for an incoming remote bus connection.

Pin	Wire Color	Connection outgoing remote bus
1	yellow	DO: Data Out
2	grey	DI: Data In
3	brown	Common
4		GND: Reference conductor, fiber optic adapter
5		Vcc: Power supply for fiber optic adapter.
6	green	DO_N: Data Out Negated
7	pink	DI_N: Data In Negated
8		Vcc: Additional power supply for fiber optic adapter
9		Plug identification

Pin	Wire Color	Connection incoming remote bus
1	yellow	DO: Data Out
2	grey	DI: Data In
3	brown	Common*
4		GND*: Reference conductor, fiber optic adapter
5	green	Vcc*: Power supply for fiber optic adapter.
6	pink	DO_N: Data Out Negated
7		Vcc*: Additional power supply for fiber optic adapter
8		(not used)
9		

Hardware Configuration of the BKF 202

The following figure illustrates an example BKF 202 hardware layout showing nodes.

Operation of the BKF 202 InterBus S Slave Module

I/O Map

The BKF 202 module requires a total of $163 x$ input registers and a total of $164 x$ output registers. The first $3 x$ input register is the Status Word, and the following $3 x$ input registers are Data Words starting with $3 x+1$ and ending with $3 x+15$. The first $4 x$ output register is the Control Word, and the following $4 x$ output registers are Data Words starting with $4 x+1$ and ending with $4 x+15$. Refer to the other information in this map.

3x Input
 Registers
 The following table describes the 3x Input Registers (1 3x Status Word \& Up to 15 3x Data Words) or (1 3x Status Word \& Up to 63 3x Data Words).

State RAM	Bit 8-15	Bit 7-4	Bit 3	Bit 2	Bit 1	Bit 0
3xxxxx (Status Word)	Number of words; see Front View and Label, p. 237	0(not used)		RD	RC	BA
				For more information, see $3 x$ Status Word Byte Structure, p. 244		
$3 x x x x x+1$	Process data - Input word 1					
$3 x x x x x+2$	Process data - Input word 2					
$3 x x x x x+3$	Process data - Input word 3					
$3 x x x x x+4$	Process data - Input word 4					
:	:					
$3 x x x x x+15$	Process data - Input word 15					

3x Status Word Byte Structure

The following table describes the $3 x$ Status Word Byte Structure.

State RAM	Bit 7-4	Bit 3	Bit 2	Bit 1	Bit 0	Function
3xxxxx (Status Word)	0 (not used)			$\mathbf{1}$	BA; see LED Displays, \boldsymbol{p}. 238	
		1		RC; seeseeLED Displays, p. 238		
		1			RD; see seeLED Displays, p. 238	

4x Output Registers

The following table describes the $4 x$ Output Registers ($14 x$ Control Word \& Up to 15 4 x or (14 x Control Word \& Up to 63 4x Data Words)

State RAM	Bit 15	:	Bit 2	Bit 1	Bit 0
4xxxxx (Control Word)				PLC-Stop Module Faults	Module Error)
				See $4 x$ Control Word Byte Structure, p. 245	
$4 \mathrm{xxxxx}+1$	Process data - Output word 1				
$4 \mathrm{xxxxx}+2$	Process data - Output word 2				
$4 \mathrm{xxxxx}+3$	Process data - Output word 3				
$4 \mathrm{xxxxx}+4$	Process data - Output word 4				
:					
$4 x x x x x+15$	Process data - Output word 15				

4x Control Word The following table shows the 4 x Control Word Byte Structure.

Byte Structure

State RAM	Bit 15-2	Bit 1	Bit 0	Function
4xxxxx (Control Word)	(not used)		1	Module Error Setting Bit 0 transmits a "Module- Error" to the Interbus master.
		1		PLC-Stop Module Faults: Setting of Bit 1 transmits a "Module-Error" to the Interbus master, when the PLC is stopped.

Interbus BiDirectional Communication between the E984 PLC and the BKF 202 IBS Slave Module

The following figure shows the process data exchange between the PLC and the Interbus.

E984 PLC - OUT	BKF 202-IN
Check word (4x)	
Data word $1(4 x+1)$	1
2	2
:	:
:	:
:	:
Data word $15(4 x+15)$	15
0	16

E984 PLC-IN
BKF 202-OUT

Specifications of the BKF 202 InterBus S Slave Module

Specifications

The following table lists specifications for the BKF 202 InterBus S Slave Module.

Power supply	
Internally from I/O-Bus	5VDC, 300 mA max. (w/o fiber-optic Interface)
Data Interface	
Field bus	as RS 485 Interface remote in: potentialfree 150 Ohm remote out: potentialbound 150 Ohm
Processor	
Processor type	80 C 3216 MHz
Data memory	32KB RAM
Firmware	64KB EPROM
I/O Map	
Register 3x/4x	16 in/16 out
Physical Characteristics	
Module	in standard-size case
Format	I Slot
Weight	250 g
Type of Connection	
Remote bus	9-pin DSUB socket/connector bar
Backplane	Connector bar 1/3 C30M
Environmental Characteristics	
Regulations	VDE 0160, UL 508
Permissible ambient temperature	$0 \ldots+60$ degrees C.
Power dissipation	max. 1.5W
Option	Fiber-optic adapter

DAO 216 Discrete Output Module

13

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAO 216 discrete output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAO 216 Discrete Output Module?	250
DAO 216 Discrete Output Module Physical Characteristics	251
Protecting the DAO 216 Discrete Output Module from Inductive Back EMF	255
DAO 216 Discrete Output Module Specifications	256

What is the DAO 216 Discrete Output Module?

DAO 216
Discrete Output Module

A WARNING

Operational Hazard
The DAO 216 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

The DAO 216 is a discrete output module with 16 independent 24 Vdc output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads. The module is structured in one group of 16 outputs. The outputs are not isolated.

The DAO 216 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and field connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided. Refer to the diagram in LEDs, p. 251

DAO 216 Discrete Output Module Physical Characteristics

LEDs	The DAO 216 has 17 LEDs. One green LED opposite terminal screw \#1 indicates presence of external working voltage to the 16 outputs ($\mathrm{ON}=$ voltage available; OFF $=$ voltage not available). There are 16 red LEDs opposite terminal screws 3 ... 10 and $14 \ldots 21$, indicating when ON that 24 Vdc is present at the adjacent discrete output.

Front View and Fill-in Label of the DAO 216 Module

Simplified Simplified Schematic for the DAO 216 Output Module

Schematic

Wiring Diagram Wiring the DAO 216

Protecting the DAO 216 Discrete Output Module from Inductive Back EMF

Instructions If you have inductive loads on longer lines with logic elements located in the output loads, it is essential to install an external clamping diode in parallel with the operating coil to protect the module from reverse EMF.

Clamping Diode Clamping Diode on an Inductive Load

DAO 216 Discrete Output Module Specifications

DAO 216 Specifications	The following table contains a list of DAO 216 specifications		
	Module Topology	Number of Outputs	16
		Number of Groups	1
		Points/Group	16
		Isolation	No isolation provided
	Power Supplies	External Source Requirement	$24 \mathrm{Vdc}(20$ to 30 Vdc), 5 A @ 30 Vdc
		Internally Provided Source	5 V from I/O bus, 30 mA max.
		Internal Power Dissipation	5 W (typical)
	Electrical Characteristics	Operating Mode	True High
		ON State Signal Level	Source voltage minus 3 V
		OFF State Signal Level	$0 \ldots+2 \mathrm{~V}$, less than 1 mA
		Load Current/Output	10 mA ... 500 mA
		Max Load Current/Module	4 A
		Response Time	less than 1 msec .
		Reverse-EMF Protection	Built-in circuitry limits inductive spikes to a maximum of -15 V
		Switch Capacity for Bulbs	Max. 5 W (Surge current = Nor mal current x 10)
		OFF-ON Operations	1000/hour for inductive load @ maximum load current
		Wire Size/Terminal	One wire = 14 AWG
			Two wires = 20 AWG
	I/O Map	Discrete 1x/0x	$0 \mathrm{in} / 16$ out
	Dimensions	W $\times \mathrm{H} \times \mathrm{D}$	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm} \\ & (1.6 \times 5.6 \times 4.5 \mathrm{in}) \end{aligned}$
		Weight	250 g (. 55 lb)
	Agency Approval	VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards	

Overview of the DAP 204 Relay Output Module

14

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 204 Relay Output Module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 204 Relay Output Module?	258
DAP 204 Relay Output Module LEDs	259
DAP 204 Relay Output Module Field Wiring	260
Protecting the DAP 204 Relay Output Module from Inductive Back EMF	261
DAP 204 Relay Output Module Specifications	263

What is the DAP 204 Relay Output Module?

Brief Product Description

The DAP 204 is a four point relay output module. It utilizes logic signals within the PLC to activate four independent, individually isolated, normally open relay contacts. Source voltage for any output load may be 24 ... 154 Vdc or 24 ... 250 Vac.

Wiring Diagram and Simplified Schematic for the DAP 204 Output Module

DAP 204 Relay Output Module LEDs

LEDs

The DAP 204 has five LEDs. One green LED opposite terminal screw 1 indicates the presence of relay coil voltage when ON. Four red LEDs opposite terminal screws $3,7,14$, and 18 indicate when ON that the relay coils are energized at outputs 1 ... 4, respectively, and suggest that the contacts are closed and the loads energized. These LEDs are in parallel with the relay coils, not the load.

DAP 204 Relay Output Module Field Wiring

Introduction

DAP 204 Relay Output Module

Field wiring to each output connects to a double screw terminal. This module requires power from an external 24 Vdc source to support the relay driver (even if all the outputs switch ac power).

A wiring diagram and simplified schematic for the DAP 204 relay output module is provided below.

Protecting the DAP 204 Relay Output Module from Inductive Back EMF

Instructions

Illustration of Clamping Diode and Snubber Circuit

In order to increase the service life of your contacts and protect the DAP 204 module from potential reverse-EMF damage, externally connect a clamping diode in parallel with each inductive dc load and externally connect an RC snubber circuit in parallel with each inductive ac load.

The following illustration is an example of clamping diode and snubber circuit on inductive loads.

Suggested Component Values

The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be three or four times greater than supply voltage at 24 Vdc and 8 ... 10 times greater than supply voltage at 110 Vdc . The unpolarized (ac) snubber capacitor should have a voltage rating two or three times greater than the supply voltage.

Values may be:

$25 \ldots 70 \mathrm{mH}$.50 microF
$70 \ldots 180 \mathrm{mH}$.25 microF
180 mH	.10 microF

Snubber resistors may be 1 ... 3 ohms, 2 W . Resistor values should be increased up to 47 ohms, $1 / 2 \mathrm{~W}$ for RL exceeding 100 ohms.
Operational range options are shown in the following diagram.

A shows the consequences of ohmic load and L/R ratios
B shows the application of the suppression diode
C shows the application of a current limiting resistor in series with the diode to protect the diode from contact bounce

DAP 204 Relay Output Module Specifications

DAP 204
Specifications

The following table contains a list of DAP 204 relay output module specifications.

Module Topology	Number of Relay Outputs	4
	Number of Groups	4
	Points/Group	1
	Isolation	Four individually isolated relay contacts
Power Supplies	External Source Requirement	$24 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum
	Internally Provided Source	5 V from I/O bus @ 25 mA max.
	Internal Power Dissipation	2 W (typical)
Electrical Characteristics	Output Voltage Ranges	$24 . . .154 \mathrm{Vdc} ; 24 . .250$ Vac
	Operating Mode	Normally Open
	Response Time	10 ms (typical)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
Environmental Characteristic	Operating Temperature	$-25 \ldots+70$ degrees C ($-13 \ldots+158$ degrees F$)$

Output Characteristics	$\begin{aligned} & \text { Load Currents @ } 230 \\ & \text { Vac } \end{aligned}$	2 A continuous (maximum, resistive load)	
		4 A instantaneous (maximum, resistive load)	
		1 A continuous (maximum, $\mathrm{Cos}=0.5$)	
	Load Current @ dc	Working Voltage @ 24 Vdc	2 A continuous maximum (resistive load)
			4 A instantaneous maximum (resistive load)
			1 A continuous maximum (L/R* $=30 \mathrm{~ms}$)
		Working Voltage @ 60 Vdc	1 A continuous maximum (resistive load)
			0.6 A maximum ($\mathrm{L} / \mathrm{R}^{*}=30 \mathrm{~ms}$)
		Working Voltage @ 140 Vdc	0.3 A continuous (resistive load)
			$0.15 \mathrm{~A}\left(\mathrm{~L} / \mathrm{R}^{*}=20 \mathrm{~ms}\right)$
	Wetting Current	5 mA for closed contacts	
	Leakage	1 mA	
	Internal Protective Circuitry	68 ohms +15 nF in parallel with each contact	
* L = Load Inductance in Henries; $\mathrm{R}=$ Load Resistance in ohms			
I/O Map	Discrete 1x/0x	0 in/8 out	

Service Life of Contacts	Mechanical switching cycles	20,000,000	
	Electric switching cycles	10,000,000 @ $230 \mathrm{Vac} / 0.2 \mathrm{~A}$	
		(Resistive Loads)	$\begin{aligned} & \text { 7,000,000 @ } 230 \text { VAC / } \\ & 0.5 \text { A } \end{aligned}$
			8,000,000 (typical) @ 30 VDC / 2 A, with clamping diode
			1,000,000 (typical) @ 60 VDC / 1 A, with clamping diode, 3000 cycles/hr max
	Electric switching cycles	5,000,000 @ $230 \mathrm{Vac} / 0.5 \mathrm{~A}$	
		(Inductive Loads, Cos = 0.5*)	
	Overload Protection	Should be provided externally	

Service Life for Resistive Loads

The maximum number of switching cycles is reduced when inductive loads are encountered. Reference the load device manufacturer's catalog for steady state and inrush VA ratings to determine the number of operations derating factor. If the frequency of operations is relatively high, use the inrush VA to calculate Cos f : Effective number of operations = \# of operations (resistive load) x reduction factor:
Reduction Factor for Inductive Loads

Cos $=$ Watts divided by VA.

Dimensions	WxHxD	$40.3 \times 145 \times 117.5 \mathrm{~mm}$ $(1.6 \times 5.6 \times 4.5 \mathrm{in})$
	Weight	$240 \mathrm{~g}(0.52 \mathrm{lb})$
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards	

Overview of the DAP 208/258 Relay Output Module

15

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 208/258 relay output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 208/258 Relay Output Module?	268
DAP 208/258 Relay Output Module LEDs	268
DAP 208/258 Relay Output Module Field Wiring	269
Protecting the DAP 208/258 Relay Output Module from Inductive Back EMF	270
DAP 208/258 Relay Output Module Specifications	272

What is the DAP 208/258 Relay Output Module?

Brief Product	The DAP 208/258 is an eight point relay output module. It utilizes logic signals within
Description	the controller to activate eight individually isolated, normally open relay contacts. Source voltage for any output load may be $24 \ldots 154$ Vdc or $24 \ldots 250$ Vac.

DAP 208/258 Relay Output Module LEDs

LEDs The DAP 208/258 has nine LEDs. One green LED opposite terminal screw 1 indicates the presence of relay coil voltage when ON. Eight red LEDs opposite terminal screws $3,5,7,9,14,16,18$, and 20 indicate when ON that the relay coils are energized at outputs $1 \ldots 8$, respectively, and suggest that the contacts are closed and the loads energized. These LEDs are in parallel with the coils, not the load.

DAP 208/258 Relay Output Module Field Wiring

Introduction

DAP 208/258 Wiring Diagram and Simplified Schematic

Field wiring to each output connects to a double screw terminal. This module requires power from an external 24 Vdc source to support the relay driver (even if all the outputs use ac power). The DAP 258 functions just like the DAP 208 except that the DAP 258 operates at extended temperature.

Note: DAP 258 model is available with conformal coating. The conformal coating model is DAP 258C and it meets Railway standard EN 50155.

A wiring diagram and simplified schematic for the DAP 208/258 relay output module is provided below.

Protecting the DAP 208/258 Relay Output Module from Inductive Back EMF

Instructions To increase the service life of your contacts and protect the DAP 208/258 module from potential reverse-EMF damage, externally connect a clamping diode in parallel with each inductive dc load and externally connect an RC snubber circuit in parallel with each inductive ac load.

Clamping Diode and Snubber Circuit

The following illustration is an example of clamping diode and snubber circuit on inductive loads.

Suggested Component Values

The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be three or four times greater than supply voltage at 24 Vdc and 8 ... 10 times greater than supply voltage at 110 Vdc . The unpolarized (ac) snubber capacitor should have a voltage rating two or three times greater than the supply voltage.

Values may be:

Load Inductance	Capacitance
$25 \ldots 70 \mathrm{mH}$.50 microF
$70 \ldots 180 \mathrm{mH}$.25 microF
180 mH	.10 microF

Snubber resistors may be $1 \ldots 3 \mathrm{~W}, 2 \mathrm{~W}$. Resistor values should be increased up to 47 ohms, $1 / 2 \mathrm{~W}$ for RL exceeding 100 ohms.

Operational Range Options Using 140 Vdc Example

A shows the consequences of ohmic load and L/R ratios
B shows the application of the suppression diode
C shows the application of a current limiting resistor in series with the diode to protect the diode from contact bounce

DAP 208/258 Relay Output Module Specifications

DAP 208/258
Tables and Diagrams

The following table contains a list of DAP 208/258 relay output module specifications.

Module Topology	Number of Relay Outputs	8
	Number of Groups	8
	Points/Group	1
	Isolation	Eight individually isolated relay contacts
Power Supplies	External Source Requirement	$24 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum
	Internally Provided Source	5 V , less than 60 mA from I/O bus
	Internal Power Dissipation	2 W (typical)
Electrical Characteristics	Output Voltage Ranges	$24 . .154 \mathrm{Vdc} ; 24 . .250 \mathrm{Vac}$
	Operating Mode	Normally Open
	Response Time	10 ms (typical)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
Environmental Characteristic	Operating Temperature	0 ... 60 degrees C for DAP 208 $-40 \ldots+70$ degrees C for DAP 258

Output Characteristics	Load Currents at 230 Vac	2 A continuous (maximum, resistive load)	
		4 A instantaneous (maximum, resistive load)	
		1 A continuous (maximum, $\mathrm{Cos}=0.5$)	
	Load Current at dc	Working Voltage @ 24 Vdc	2 A continuous maximum (resistive load)
			4 A instantaneous maximum (resistive load)
			1 A continuous (maximum, $\mathrm{Cos}=$ 0.5)
		Working Voltage @ 60 Vdc	1 A continuous maximum (resistive load)
			$\begin{aligned} & 0.6 \mathrm{~A} \text { maximum (L/R* } \\ & =30 \mathrm{~ms} \text {) } \end{aligned}$
		Working Voltage @ 140 Vdc	0.3 A continuous (resistive load)
			$0.15 \mathrm{~A}\left(\mathrm{~L} / \mathrm{R}^{*}=20 \mathrm{~ms}\right)$
	Wetting Current	5 mA for closed contacts	
	Leakage	1 mA	
	Internal Protective Circuitry	68 ohms +15 nF in parallel with each contact	
	Overload Protection	Should be provided externally	
		* L = Load Inductance in Henries; R = Load Resistance in ohms	
I/O Map	Discrete 1x/0x	$0 \mathrm{in} / 8$ out	

Service Life of Contacts	Mechanical switching cycles	20,000,000	
	Electric switching cycles	8,000,000 @ $230 \mathrm{Vac} / 0.2 \mathrm{~A}$	
		(Resistive Loads)	$\begin{aligned} & \text { 3,000,000@ } 230 \\ & \text { VAC / 0.5 A } \end{aligned}$
			4,000,000 (typical) @ 30 VDC / 2 A , with clamping diode
			1,000,000 (typical) @ 60 VDC / 1 A, with clamping diode, 3000 cycles/hr max
	Electric switching cycles	2,000,000 @ $230 \mathrm{Vac} / 0.5 \mathrm{~A}$	
		(Inductive Loads, Cos $=0.5$)	

The following graph shows Service Llfe for Resistive Loads.

SERVICE LIFE FOR RESISTIVE LOADS
The maximum number of switching cycles is reduced when inductive loads are encountered. Reference the load device manufacturer's catalog for steady state and inrush VA ratings to determine the number of operations derating factor. If the frequency of operations is relatively high, use the inrush VA to calculate Cos: Effective number of operations = \# of operations (resistive load) x reduction factor:

The chart below shows Reduction Factor for Inductive Loads.

REDUCTION FACTOR FOR INDUCTIVE LOADS
Cos $=$ Watts divided by VA.

Dimensions	WxHxD	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \times 4.5 \mathrm{in})$
	Weight	$240 \mathrm{~g} \mathrm{(0.52lb)}$
Agency Approvals	DAP 208: VDE 0160; UL 50; CSA 22.2 No.142; and FM Class I, Div 2 Standards	
	DAP 258C: Railway standard EN 50 155: EMC 89/336/EEC (See Requirements for CE Compliance, p. 857). UL 50; CSA 22.2 No.142; and FM Class I, Div 2 pending	

Overview of the DAP 209 Output Module

16

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 209 output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 209 Output Module?	278
DAP 209 Output Module LEDs	278
DAP 209 Output Module Field Wiring	279
DAP 209 Output Module Specifications	280

What is the DAP 209 Output Module?

Brief Product Description

The DAP 209 is a discrete output module with eight independent 120 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to $1 \mathrm{~A} /$ channel. The module is structured in one group of eight outputs, each output electrically isolated from the I/O bus by an opto coupler.

DAP 209 Output Module LEDs

LEDs
The DAP 209 has nine LEDs. One green LED opposite terminal screw 1 indicates the presence of AC line voltage when ON. Eight red LEDs opposite terminal screws $3,5,7,9,14,16,18$, and 20 indicate an AC ON condition for load at the field wiring side of the system for outputs $1 \ldots 8$, respectively. Depending on local conditions, users may notice LEDs on unused outputs exhibiting a dim glow. To eliminate this condition, connect a 39 K ohms, $1 / 2 \mathrm{~W}$ resistor from the unused output terminal to ac neutral.

DAP 209 Output Module Field Wiring

Introduction

Wiring Diagram for DAP 209

The DAP 209 is a discrete output module with eight independent 120 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to 1 A /channel. The module is structured in one group of eight outputs, each output electrically isolated from the I/O bus by an opto coupler.

A wiring diagram and simplified schematic for the DAP 209 output module is provided below.

DAP 209 Output Module Specifications

DAP 209 Tables of Specifications

The following tables contain DAP 209 output module specifications.

Module Topology	Number of Outputs	8
	Number of Groups	1
	Points/Group	8
	Isolation	Optocoupler on each output point
Power Supplies	External Source Requirement	120 Vac
	Internally Provided Source	5 V from I/O bus; 55 mA max.
	Internal Power Dissipation	2 W (typical)
Electrical Characteristics	Working Voltage Range	$85 \text {... } 138 \text { Vac continuous, } 47 \text {... }$ $63 \mathrm{~Hz}$
	Output Voltage	150 Vac RMS maximum for 10 s 200 Vac RMS maximum for 1 cycle
	Operating Mode	True High
	OFF State Leakage Current	1.9 mA maximum
	ON State Voltage Drop	1.5 Vac RMS maximum
	Load Current	Up to 1 A/channel 5 mA mini mum
	Response Time	8.34 ms maximum @ 60 Hz
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/0x	$0 \mathrm{in} / 8$ out
Dimensions	WxHxD	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \\ & \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	450 g (1 lb)
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards	

DAP 209 Load Current (Amps) @ 60 Degrees C, Ambient

Number of Outputs in Use	Max. Allowable Load/Output @ 60 degrees, Ambient
8	0.6 A
6	0.67 A
4	0.71 A
2	0.87 A
1	1.0 A

DAP 2091 A Load Current vs. Temperature

Number of Outputs @ 1 A	Allowable Ambient Temperature
8	35 degrees C
6	40 degrees C
4	45 degrees C
2	51 degrees C
1	60 degrees C

Overview of the DAP 210 Output Module

17

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 210 output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
DAP 210 Output Module LEDs	284
DAP 210 Output Module Field Wiring	285
DAP 210 Output Module Specifications	286
What is the DAP 210 Output Module?	288

DAP 210 Output Module LEDs

LEDs
The DAP 210 has nine LEDs. One green LED opposite terminal screw 1 indicates the presence of system power to the module. Eight red LEDs opposite terminal screws $3,5,7,9,14,16,18$, and 20 indicate that the output points have been enabled on the module's logic side.

\triangle CAUTION

Operational Hazard

Each output group is fused to protect against catastrophic failure. For protection against triac failure, each output must be individually fused with a fast-acting fuse rated at 1.5 times user continuous current (fuse must not exceed 2 A).
Failure to follow this instruction can result in injury or equipment damage.
The following diagram illustrates bit assignment for the DAP 210 output module.

DAP 210 Output Module Field Wiring

Introduction

DAP 210 Wiring Diagram

The DAP 210 is a discrete output module with two independent groups of four 24 ... 230 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to $1 \mathrm{~A} /$ channel. The module outputs are optically isolated from the system.

A wiring diagram and simplified schematic for the DAP 210 output module is provided below.

DAP 210 Output Module Specifications

DAP 210 Specifications

The following table and illustrations contain DAP 210 output module specifications.

Module Topology	Number of Outputs	8
	Number of Groups	2
	Points/Group	4
	Isolation	Field to bus; 1500 Vac RMS @ 47 ... $63 \mathrm{~Hz}, 2500 \mathrm{Vdc}$, both for a period of 60 s without breakdown
Power Supplies	*External Source Requirement	24 ... $230 \mathrm{Vac}, 47$... 63 Hz
	Internally Provided Source	5 V , less than 70 mA from the I/O bus
	Power Dissipation	7.2 W with all points ON
	Fusing (per group)	One 250 Vac, 6.3 A time-lag fuse (Wickmann TR5-T Fuse; Modicon Part \# 57-0110-000)
Electrical Characteristics	*Working Voltage Range	24 ... 230 Vac continuous, 47 ... $63 \mathrm{~Hz}$
	Maximum Output Voltage	300 Vac RMS maximum for 10 s 400 Vac RMS maximum for 1 cycle
	Operating Mode	True High
	OFF State Leakage Current	3.75 mA maximum
	ON State Voltage Drop	1.5 Vac RMS maximum
	Maximum Load Current	Up to 1.0 A/channel (see graph)
	Maximum Surge Current	15 A/1 cycle, 1 surge/min maximum
	Minimum Load Current	50 mA RMS
	Response Time	8.34 ms maximum OFF to On and ON to OFF @ 60 Hz
	Maximum Rate of Applied DV/DT	$400 \mathrm{~V} / \mathrm{msec}$
	Maximum Rate of Commutating DV/DT	$5 \mathrm{~V} / \mathrm{mic}$ ros
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/0x	0 in/8 out

Environmental	Operating Temperature	$0 \ldots 60$ degrees C
	Storage Temperature	-40 ... +80 degrees C
	Humidity	0 ... 95 percent relative humidity @ 0 ... 60 degrees C
Dimensions	W x H x D	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \\ & \times 4.5 \mathrm{in}) \end{aligned}$
Weight	1 lb (.45kg)	
*Agency Approvals	VDE 0160; UL 508; CSA 22.2 No.142; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, p. 857) Standards	
*The module is labelled both as a 24 VAC to 115 VAC or 24 VAC to 230 VAC. When used in a VDE 0160 environment the voltage range is reduced to 24 VAC to 115 VAC. When used in a non VDE 0160 environment the module meets specification IEC 1131; UL 508; and CSA 22.2 No. 142 and operates over the full range of 24 VAC to 230 VAC.		

The graph below shows DAP 210 Power Output.

What is the DAP 210 Output Module?

Brief Product Description

The DAP 210 is a discrete output module with two independent groups of four 24 ... 230 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to $1 \mathrm{~A} /$ channel. The module outputs are optically isolated from the system.

A WARNING

Operational Hazard

The DAP 210 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

Overview of the DAP 211
 Combined I/O Module

18

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 211 combined I/O module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 211 Combined I/O Module?	290
DAP 211 Combined I/O Module Logical Input Routine	291
DAP 211 Combined I/O Module Error Checking Procedure for Output States	292
DAP 211 Combined I/O Module Setup Options	292
DAP 211 Combination I/O Module LEDs	293
DAP 211 Combined I/O Module Field Wiring	294
DAP 211 Combined I/O Module Specifications	295

What is the DAP 211 Combined I/O Module?

Brief Product Description

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The DAP 211 is a 120 Vac , mixed I/O (4 binary isolated input points/4 binary isolated short-circuited protected Triac output points) module. An external operating voltage of 120 Vac for sensor supply (inputs) and an external working voltage of 120 Vac for the outputs must be provided.

The DAP 211 module is unique in its design. It may be used in two different applications:

1. Non-voted (single) application, where the DAP 211 monitors its own outputs using a single module.
2. Voted (dual) application, where the output of the first DAP 211 is monitored through an input of the second DAP 211 using a two-module configuration.

When used for voted (dual) applications, such as clutch and brake, the modules operate in pairs. That is, the interconnection of two modules makes it possible for the output of the first module to be monitored through an input of the second module. This results in logical states.

Note: This module corrects a current problem of false indication of inputs being in the on" state due to leakage currents in monitored output systems as applied in safety circuits like clutch and brake I/O circuits.

DAP 211 Combined I/O Module Logical Input Routine

Logical States for Voted (Dual) Operations

The five possible outputs for module 1 appear at the top of the table. The five possible outputs for module 2 appear on the left side of the table. The input states for module 2 and module 1 appear in the center as noted.

Module 1												
Output States								Triac On	Triac as Diode	AUX Broken	Load Broken	Triac Off
Module 2	Triac On	Module2=H Module1=H	Module2=H Module1=H	Module2=L Module1=H	Module2=H Module1=H	Module2=H Module1=H						
	Triac as Diode	Module2=H Module1=H										
	AUX Broken	Module2=H Module1=L	Module2=H Module1=H	Module2=H Module1=H	Module2=L Module1=L	Module2=H Module1=H						
	Load Broken	Module2=H Module1=H	Module2=H Module1=H	Module2=L Module1=L	Module2=H Module1=H	Module2=H Module1=H						
	Triac Off	Module2=H Module1=H	Module2=H Module1=H	Module2=H Module1=H	Module2=H Module1=H	Module2=L Module1=L						

KEY: H=High, L=Low, Triac On= Traic is on or defected (shorted), Triac as Diode= Triac is defected, works as a diode (any direction), AUX Broken= AUX connection between the 2 modules is broken, Load Broken= Load connection between the 2 modules is broken.

For voted (dual) applications, ensure the two modules are wired as shown in DAP 211 Combined I/O Module Field Wiring. The logical states table is an absolute MUST in programming/configuration, since only those modules with a defined operating state have a "LOW-LOW" combination.

DAP 211 Combined I/O Module Error Checking Procedure for Output States

Error Checking Perform the following steps to ensure you have no output errors:
Procedure

Step	Action
1	Set all outputs to OFF. Input 1 and Input 2 must be low, if not you have an error.
2	Test Output 1: Output 1 is set to ON, Output 2 remains at OFF. Result Input 1 is HIGH (input 2 is not tested in this step), if not, you have an error.
3	Test Output 2: Output 2 is set to ON, Output 1 remains at OFF. Result Input 2 is HIGH (input 1 is not tested in this step), if not, you have an error.
4	Set all outputs to OFF: Input 1 and Input 2 must be low, if not, you have an error.
5	If no error, start the press.

DAP 211 Combined I/O Module Setup Options

Setup Options The way you setup your DAP 211 depends upon the application. Refer to the wiring diagram for Non-Voted (Single) applications. This application requires one PLC and one DAP 211 module. Refer to the wiring diagram for Voted (Dual) applications. This application requires two PLCs and two DAP 211 modules.

DAP 211 Combination I/O Module LEDs

LEDs

Location of LED	Label	Color	Description
1	Ready 211 module has LEDs opposite terminal screws $1 \ldots 22$.		
$3,8,14,19$	Out1 ... Out4	Red	Oreen On: Output=1 Off: Output=0
	Working voltage of 4 out puts: On: Working voltage exist Off: No working voltage		
$5,10,16,21$	In1 \ldots In4	Red	Input signals: On: Input=1 Off: Input=0

A front view with DAP 211 label is provided below.

DAP 211	
ready L1	
X1	
out 1	
out 1	
in 1	
L2	
X2	
out 2	
out 2	
in 2	
L3	
X3	
out 3	
out 3	
in 3	
L4	
X4	
out 4	
out 4	
in 4	
card	

DAP 211 Combined I/O Module Field Wiring

Setup Options The way you setup your DAP 211 depends upon the application. Non-voted (single)

 applications require one PLC and one DAP 211 module. Voted (dual) applications require two PLCs and two DAP 211 modules.Wiring Diagrams for DAP 211

A DAP 211 wiring diagram for voted (dual) applications is provided below.

DAP 211

A DAP 211 wiring diagram for non-voted (single) applications is provided below.

DAP 211 Combined I/O Module Specifications

Table of
Specifications for DAP 211

The following table contains DAP 211 combined I/O module specifications.

Module Topology	Number of Inputs	4 (separated from logic through optical coupler)
	Number of Triac Outputs	4
	Number of Groups	4
	Points/Group	$1 \mathrm{in} / 1$ out
Required Loadable (for Modsoft ONLY)	SW-IODR-001	
	Isolation	One group is isolated from the other group. Within a group there is no isolation between inputs and outputs.
Power Supplies	External Sensor Requirement	120 Vac
	External Working Requirement	120 Vac
	Internally Provided Source	5 V from I/O bus; 35 mA typical
	Power Dissipation	5 W typical
Input Characteristics	Sensor Power Supply	120 Vac -15 percent, +10 percent @ 47 ... 63 Hz
	Signal Rated Value	120 Vac
	Input Delay	1 period
	Type of Networking	Potential isolation per group (group=1 input/1output)
Output Characteristics	Working Voltage	```120 Vac -15 percent, +10 percent @ 47 ... 63 Hz for all 4 outputs```
	Allocation	Short-circuit protection by internal fuse
	Type of Networking	Potential isolation per group (group=1 input/1output)
I/O Map	Discrete 1x/0x	$4 \mathrm{in} / 4$ out
Environmental Characteristics	Operating Temperature	0 ... 60 degrees C
Dimensions	WxHxD	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times \\ & 5.6 \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	$190 \mathrm{~g} \mathrm{(.4} \mathrm{lb)}$.

Agency Approvals	VDE 0160; UL 508; CSA 22.2 No. 142, European Directive EMC
	$89 / 336 / E E C$ (See Requirements for CE Compliance, p. 857) Standards

Overview of the DAP 212/252
 Combined I/O Module

19

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 212/252 combined I/O module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 212/252 Combined I/O Module?	298
DAP 212/252 Combined I/O Module LEDs	298
DAP 212/252 Combined I/O Module Field Connections	299
Protecting the DAP 212/252 Combined I/O Module from Inductive Back EMF	301
DAP 212/252 Combined I/O Module Specifications	303

What is the DAP 212/252 Combined I/O Module?

Brief Product Description

The DAP 212/252 is a 24 Vdc , mixed I/O (8 points in/4 relays out) module. It senses eight discrete input signals received by field sensing devices-such as pushbuttons, limit switches, or other 24 Vdc sources-and converts those signals into logic that can be used by the controller. It utilizes logic signals within the controller to activate four independent and individually isolated normally open relay contacts. The module requires power from an external 24 Vdc source to operate. The DAP 252 functions just like the DAP 212 except that the DAP 252 operates at extended temperature $40 \ldots+70$ degrees C.

Note: DAP 252 model is available with conformal coating. The conformal coating model is DAP 252C and it meets Railway standard EN 50155.

DAP 212/252 Combined I/O Module LEDs

LEDs
The DAP 212/252 module has two green LEDs opposite terminal screws 1 and 12; when one of these LEDs is ON, it indicates power available to the input or output points directly below it. Below terminal screw 1 are four red LEDs opposite terminal screws $3,5,7$, and 9 indicating relay output points $1 \ldots 4$, respectively. Below terminal screw 12 are eight red LEDs opposite terminal screws $14 \ldots 21$ indicating inputs 1 ... 8, respectively.

DAP 212/252 Combined I/O Module Field Connections

DAP 212/252 A wiring diagram for the DAP 212/252 combined I/O module is provided below. Wiring Diagram

Simplified
 A simplified schematic for the DAP 212/252 combined I/O module is provided below.
 Schematic

Protecting the DAP 212/252 Combined I/O Module from Inductive Back EMF

Instructions

Illustration of Clamping Diode and Snubber Circuit

To increase the service life of the relay output contacts and protect the DAP 212/252 module from potential reverse-EMF damage, externally connect a clamping diode in parallel with each inductive dc load and externally connect an RC snubber circuit in parallel with each inductive ac load.

The following illustration is an example of clamping diode and snubber circuit on inductive loads.

Suggested Component Values

The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be three or four times greater than supply voltage at 24 Vdc and 8 ... 10 times greater than supply voltage at 110 Vdc . The unpolarized (ac) snubber capacitor should have a rating two or three times greater than the supply voltage.
Values may be:

Snubber Values	
Load Inductance	Capacitance
$25 \ldots 70 \mathrm{mH}$.50 microF
$70 \ldots 180 \mathrm{mH}$.25 microF
180 mH	.10 microF

Note: To I/O Map the DAP 252 module in Modsoft you must select DAP 212. Both modules share a host driver and have similar characteristics.

DAP 212/252 Combined I/O Module Specifications

Module Specifications

The following tables and diagrams contain DAP 212/252 combined I/O module specifications.

Module Topology	Number of Inputs	8
	Number of Relay Outputs	4
	Number of Groups	2
	Points/Group	$8 \mathrm{in} / 4$ out
	Isolation	Relay output contacts are individually isolated; the input group is isolated from the out put group
Power Supplies	External Source Requirement	$24 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum
	Internally Provided Source	5 V from I/O bus; 25 mA max.
	Internal Power Dissipation	2 W (typical)
Input Characteristics	Working Voltage Range	$20 . .30 \mathrm{Vdc}$
	Signal Rated Value	+24 V
	ON State Signal Level	+12 V ... +30 V
	OFF State Signal Level	-2 V ... +5 V
	Input Wetting Current	7 mA
	Input Current	4 mA @ 24 V ; 6 mA @ 37 V
	Response Time	4 ms (typical) for DAP212 7 ms (typical) for DAP252
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG

Output Characteristics	Output Voltage Ranges	24 ... 110 Vdc ; 24 ... 250 Vac
	Operating Mode	Normally Open
	Response Time	10 ms (typical)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
	Load Currents at 115/230 Vac	2 A continuous (maximum, resistive load)
		4 A instantaneous (maximum, resistive load)
		1 A continuous (maximum, Cos $=0.5$)
	Load Current at 24 Vdc	2 A continuous maximum (resistive load)
		4 A instantaneous maximum (resistive load)
		1 A continuous maximum (L/ R* $=30 \mathrm{~ms}$)

DAP 212/252 Specifications (continued)

Output Characteristics (continued)	Load Current at 60 Vdc	1 A continuous maximum (resistive load)
		0.6 A maximum (L/R* $=30 \mathrm{~ms}$)
	Load Current at 110 Vdc	0.45 A continuous maximum (resistive load)
		0.25 A maximum (L/R* $=30 \mathrm{~ms}$)
	Wetting Current	5 mA for closed contacts
	Leakage	1 mA
	Internal Protective Circuitry	68 ohms +15 nF in parallel with each contact
	Overload Protection	Should be provided externally
Environmental Characteristics	Operating Temperature	0 ... 60 degrees C for DAP212 $-40 \ldots+70$ degrees C for DAP252
I/O Map	Discrete 1x/0x	8 in/4 out
* L = Load Inductance in H R = Load Resistance in ohms		
Service Life of Relay Contacts	Mechanical switching cycles	20,000,000
	Electric switching cycles (Re sistive Loads)	8,000,000 @ 230 VAC / 0.2 A 3,000,000 @ 230 VAC / 0.5 A, 4,000,000 (typical) @ 30 VDC / 2 A, with clamping diode, 1,000,000 (typical) @ 60 VDC / 1 A, with clamping diode, 3000 cycles/hr max
	Electric switching cycles (In ductive Loads, $\mathrm{Cos}=0.5$)	2,000,000 @ 230 VAC / 0.5 A

This chart shows the Service Life for Resistive Loads.

The maximum number of switching cycles is reduced when inductive loads are encountered. Reference the load device manufacturer's catalog for steady state and inrush VA ratings to determine the number of operations derating factor. If the frequency of operations is relatively high, use the inrush VA to calculate Cos: Effective number of operations = \# of operations (resistive load) x reduction factor:

This chart shows the Reduction Factor for Inductive Loads.

Cos $=$ Watts divided by VA.

Dimensions	WxHxD	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6$ $\times 4.5 \mathrm{in})$
	Weight	$190 \mathrm{~g} \mathrm{(.4} \mathrm{lb)}$
Agency Approvals	DAP 212: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards	
	DAP 252C: Railway standard EN 50 155: EMC 89/336/EEC. UL 50; CSA 22.2 No.142; and FM Class I, Div 2 pending	

Overview of the DAP 216/216N Discrete Output Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 216/216N discrete output module.

What's in this
This chapter contains the following topics:

Topic	Page
What is the DAP 216/216N Discrete Output Module?	308
DAP 216/216N Discrete Output Module LEDs	308
DAP 216/216N Field Wiring	309
Resetting the DAP 216 Module After an Overload of Short Circuit	310
Protecting the DAP 216/216N Discrete Output Module from Inductive Back EMF	312
DAP 216N Discrete Output Module Differences	313
DAP 216/216N Discrete Output Module Specifications	315

What is the DAP 216/216N Discrete Output Module?

Brief Product Description

The DAP 216/DAP216N is a discrete output module with 16 independent 24 Vdc output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads. The module is structured in two group of eight outputs, each output electrically opto-isolated from the I/O bus, and each group is protected against short circuit and overload.

Note: The AS-BDAP-216 has been enhanced. The enhancements have resulted in the AS-BDAP-216 being superseded by the AS-BDAP216N.

DAP 216/216N Discrete Output Module LEDs

LEDs The DAP 216/DAP216N has 20 LEDs. Two green LEDs opposite terminal screws 1 and 12 indicate when ON that working voltage is available to the two groups of eight discrete outputs below them. Two amber LEDs opposite terminal screws 2 and 13 go ON to indicate a short circuit or overload problem in the output group below them. There are 16 red LEDs opposite terminal screws 3 ... 10 and 14 ... 21, indicating when ON that the adjacent discrete output is in an ON condition.

DAP 216/216N Field Wiring

Wiring Diagram and Simplified Schematic for DAP 216/216N

A wiring diagram and simplifed schematic for the DAP 216/DAP216N is provided bleow.

Resetting the DAP 216 Module After an Overload of Short Circuit

Abstract

Instructions A short circuit or overload condition will cause an output point to turn itself off. The degree of overcurrent that causes the device to shut off is determined by thermal characteristics unique to the individual point switching device. When overheated due to overload conditions, the device turns off to protect itself.

The two amber LEDs display short circuit or overload conditions on the two discrete output groups. After you have taken corrective measures to remove the cause of the overload or short circuit, push the yellow reset button on the front of the module to reactivate it.

Front View of DAP 216/DAP 216N Module

A front view with DAP 216 label is provided below.

Note: No reset button exists on DAP 216N.

Protecting the DAP 216/216N Discrete Output Module from Inductive Back EMF

Instructions

Clamping Diode on an Inductive Load

If you have inductive loads on longer lines with logic elements located in the output loads, install an external clamping diode in parallel with the operating coil to protect the module from reverse EMF.

The following illustration is an example of clamping diode on inductive loads.

The clamping diode forward current rating must be equal to or greater than load
current. Diode PIV rating must be 70 ... 100 V.

Suggested Component Values

DAP 216N Discrete Output Module Differences

Introduction

Note: The AS-BDAP-216 has been enhanced. The enhancements have resulted in the AS-BDAP-216 being superseded by the AS-BDAP216N.

A WARNING

Over Current Hazard.

In the event of an enabled output sensing an over current condition, the output will disable, until the over current condition is removed. The output will then re-enable itself, if still set ON in the logic program.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

1. The manual reset button of the BDAP-216 has been replaced by a solid state retry on a shorted output.
2. The module restarts field devices automatically when the output is set ON in the User Logic and the detected field over current condition is removed. Refer to the user logic example in the figure below if detection and manual reset is still desired.
3. You may now apply the full 0.5 A per point for 4 A per Group and 8 A per Module.
4. The input impedance of the electronic circuity that handles the 24 Vdc power for the outputs was lowered to accommodate long runs of the power supply cable. As a result, the inrush current draw from the power supply is increased from about 6 A for 2 microseconds to 54A for 12 microseconds. This increase, however, is well below the inrush current that the module draws from the external power supply when outputs are switched on.

User Logic Example

A user logic example to detect module overload condition is provided below.

Each Compact I/O Module returns a Health Bit to the controller when in use. This bit is a single bit in a register that shows the slot position of the module and its status. When the module is functioning correctly this bit is set to "1". User logic can be attached to the state of this bit to hold the logic associated with this module in an OFF condition until an operator pushes a switch to reactivate the user logic.
In the illustration above, a STAT function is used to read 12 registers of which register 12 is the status word for the modules in the primary rack 1 . The BDAP216N has been placed in slot number 5 , so a SENS function block is used to sense bit 5 of this register. The output is tied to coil 0513 which turns OFF when the module becomes unhealthy. To trap this condition even if coil 0513 turns ON again, it is latched into coil 0514. This coil can then be used by the programmer as an enable/ disable to ladder logic associated with the BDAP216N in this particular slot and particular process. The user logic is restarted by the operator pressing a button attached to input 1000X.

Note: The BDAP216N will automatically restart and reset the Health Bit when the overload condition is removed. This network only holds the reset condition of any user logic programmed OFF under the control of coil 0514 in the above example.

DAP 216/216N Discrete Output Module Specifications

DAP 216/216N Specifications

The following table contains a list of the DAP 216/216N discrete output module specifications.

Module Topology	Number of Outputs	16
	Number of Groups	2
	Points/Group	8
	Isolation	Each point opto-isolated from the I/O bus Each output group isolated from the other
Power Supplies	External Source Requirement	24 Vdc
	Internally Provided Source	5 V ,less than 50 mA from the I/ O bus
	Internal Power Dissipation	1 W (typical)
Electrical Characteristics	Operating Mode	True High
	ON State Signal Level	External supply -3V
	OFF State Signal Level	$0 \ldots+2 \mathrm{~V}$, less than 1 mA
	Load Current/Output	0.5 A max.
	Max Load Current/Group	2 A (DAP 216), 4 A (DAP 216N)
	Response Time	less than 1 ms
	Reverse-EMF Protection	Clamping diode recommended across inductive loads.
	Switch Capacity for Bulbs OFF-ON Operations at Maxi mum Power	5 W (surge current = normal current x 10) 1000/h (inductive load @ maximum load current) 100/s (resistive load) 8/s (max imum lamp load)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/0x	$0 \mathrm{in} / 16$ out
Dimensions	WxHxD	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times \\ & 5.6 \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	$220 \mathrm{~g}(.5 \mathrm{lb})$
Agency Approval	VDE 0160; UL 508; and cUL Standards	

Overview of the DAP 217 Discrete Output Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 217 discrete output module.

What's in this This chapter contains the following topics:
Chapter?

Topic	Page
What is the DAP 217 Discrete Output Module?	318
DAP 217 Discrete Output Module LEDs	318
DAP 217 Discrete Output Module Field Wiring	319
Protecting the DAP 217 Discrete Output Module from Inductive Back EMF	321
DAP 217 Discrete Output Module Specifications	322

What is the DAP 217 Discrete Output Module?

Brief Product The DAP 217 is a discrete output module with 16 independent 5 ... 24 Vdc sink Description output circuits. It can operate relays, motor starters, pilot lamps, valves, solenoids and other similar loads. The module is structured in two group of eight outputs, each output electrically opto-isolated from the I/O bus.

DAP 217 Discrete Output Module LEDs

LEDs
The DAP 217 has 18 LEDs. Two green LEDs opposite terminal screws 1 and 12 indicate when ON that working voltage is available to the two groups of eight discrete outputs below them. There are 16 red LEDs opposite terminal screws $3 \ldots 10$ and $14 \ldots 21$, indicating when ON that the adjacent discrete output is in an ON condition.

DAP 217 Discrete Output Module Field Wiring

Introduction

The DAP 217 is a discrete output module with 16 independent 5 ... 24 Vdc sink output circuits. It can operate relays, motor starters, pilot lamps, valves, solenoids and other similar loads. The module is structured in two group of eight outputs, each output electrically opto-isolated from the I/O bus.

Simplified
A simplified schematic for the DAP 217 is provided below.

Schematic

Wiring Diagram

A wiring diagram for the DAP 217 is provided below.

Protecting the DAP 217 Discrete Output Module from Inductive Back EMF

Instructions If you have inductive loads on longer lines with logic elements located in the output

 loads, install an external clamping diode in parallel with the operating coil to protect the module from reverse EMF.Clamping Diode on an Inductive Load

The following illustration is an example of a clamping diode on an inductive load.

[^1]The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be 70 ... 100 V.

DAP 217 Discrete Output Module Specifications

DAP 217 Specifications

The following table contains a list of DAP 217 discrete output module specifications.

Module Topology	Number of Outputs	16
	Number of Groups	2
	Points/Group	8
	Isolation	Each point opto-isolated from the I/O bus Each output group isolated from the other
Required Loadable	SW-IODR-001 (See Requirements for CE Compliance, p. 857)	
Power Supplies	External Source Requirement	5 ... 24 VDC
	Internally Provided Source	$5 \mathrm{~V}, 60 \mathrm{~mA}$ max. from the I/O bus
	Internal Power Dissipation	3.5 W (typical)
Electrical Characteristics	Operating Mode	True Low
	Output OFF	5 Vdc (External Source)
	Output ON	less than or equal to 0.7V @ 4 mA
	Load Current/Output	0.1 A up to 0.3 A when the total current of 0.8 A per group is not exceeded
	Max Load Current/Group	0.8 A max.
	Off State Leakage Current	less than or equal to 100 mi croA/point
	Response Time	less than 1 ms
	Reverse-EMF Protection	Clamping diode recom mended across inductive loads.
	Switch Capacity for Bulbs OFF-ON Operations at Maximum Power	Surge current = normal cur rentx 10 2/s (inductive load @ maximum load current) 100/s (resistive load) 8/s (maximum lamp load)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/0x	0 in/16 out

Dimensions	W $\times \mathrm{H} \times \mathrm{D}$	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \mathrm{x}$
	Weight	$220 \mathrm{~g}(.5 \mathrm{ib})$
Agency Approval	VDE 0160; UL 508; and CSA 22.2 No.142 Standards	

Overview of the DAP 218 Output Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 218 output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 218 Output Module?	326
DAP 218 Output Module LEDs	327
DAP 218 Output Module Field Wiring	329
DAP 218 Output Module Specifications	330

What is the DAP 218 Output Module?

Brief Product Description

The DAP 218 is a discrete output module with two independent groups of eight 24 ... 240 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to $0.5 \mathrm{~A} /$ /output. The module outputs are optically isolated from the system.

A WARNING

Operational Hazard

The DAP 218 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

DAP 218 Output Module LEDs

LEDs
 The DAP 218 has 17 LEDs. One green LED opposite terminal screw 1 indicates the presence of bus power to the module. Sixteen red LEDs opposite terminal screws 3 ... 10 and 14 ... 21 indicate that the output points have been enabled on the module's logic side.

\triangle CAUTION

Fuse Protection Hazard

Each output group is fused to protect against catastrophic failure. For protection against triac failure, each output must be individually fused with a 1 A fast-acting fuse.

Failure to follow this instruction can result in injury or equipment damage.

4x Bit
 A bit assignment diagram for the DAP 218 output module is provided below.
 Assignment

4x Bit Assignment

DAP 218 Output Module Field Wiring

Introduction
The DAP 218 is a discrete output module with two independent groups of eight 24 ... 240 Vac output circuits. It can drive relays, motor starters, pilot lamps, valves, solenoids and other similar loads of up to $0.5 \mathrm{~A} /$ output. The module outputs are optically isolated from the system.

Wiring Diagram A wiring diagram and simplified schematic for the DAP 218 is provided below. and Simplified Schematic

DAP 218 Output Module Specifications

DAP 218 Table of Specifications

The following table contains a list of DAP 218 output module specifications.

Module Topology	Number of Outputs	16	
	Number of Groups	2	
	Points/Group	8	
	Isolation	Field to bus; 1780 Vac RMS @ 47-63 Hz , or 2500 VDC , both for a period of 60 s without breakdown	
Power Supplies	*External Source Requirement	24 ... $230 \mathrm{Vac}, 47$... 63 Hz	
	Internally Provided Source	5 Vdc from I/O bus; 175 mA maximum	
	Power Dissipation	13 W with all points ON	
	Fusing (per group)	One $250 \mathrm{Vac}, 6.3 \mathrm{~A}$ time-lag fuse (Wickmann TR5-T Fuse; Modicon Part \# 57-0110-000)	
Electrical Characteristics	*Working Voltage Range	24 ... 240 Vac continuous, 47 ... 63 Hz	
	Maximum Output Voltage	300 Vac RMS maximum for 10 s 400 Vac RMS maximum for 1 cycle	
	Operating Mode	True High	
	OFF State Leakage Current	3.75 mA maximum	
	ON State Voltage Drop	1.5 Vac RMS maximum	
	Maximum Load Current	Up to 0.5 A/channel	
	Maximum Surge Current	15 A/output, 1 cycle max., 1 surge/min	
	Minimum Load Current	30 mA RMS	
	Response Time	8.34 ms maximum OFF -> ON and ON$\text { -> OFF @ } 60 \text { Hz }$	
	Switch Point	+/-10 Vac of zero line crossing	
	Maximum Rate of	Applied DV/DT	$400 \mathrm{~V} / \mathrm{micros}$
		Commutating DV/ DT	$5 \mathrm{~V} / \mathrm{mic}$ cos
	Wire Size/Terminal	One wire: 14 AWG	
		Two wires: 20 AWG	
I/O Map	Discrete 1x/0x	$0 \mathrm{in} / 16$ out	

Environmental	Operating Temperature	$0 \ldots 60$ degrees C
	Storage Temperature	$-40 \ldots+80$ degrees C
	Humidity	$0 \ldots 93$ perc ent relative humidity, noncondensing, @ 0 to 60 degrees C
Dimensions	W x H x D	$40.3 \times 145 \times 117.5 \mathrm{~mm} \mathrm{(1.6} \mathrm{\times 5.6} \mathrm{\times}$ $4.5 \mathrm{in})$
	Weight	$900 \mathrm{~g} \mathrm{(2} \mathrm{lb)}$
*Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, $p . ~ 857) ~ S t a n d a r d s ~$	
*The module is labelled both as a 24 VAC to 115 VAC or 24 VAC to 230 VAC. When used		
in a VDE 0160 environment the voltage range is reduced to 24 VAC to 115 VAC. When used		
in a non VDE 0160 environment the module meets specification IEC 1131; UL 508: and CSA		
22.2 No.142 and operates over the full range of 24 VAC to 230 VAC.		

Illustration

A DAP 218 power output graph is provided below.

Overview of the DAP 220/250 Combined I/O Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 220/250 combined I/O module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 220/250 Combined I/O Module	334
DAP 220/250 Combined I/O Module LEDs	335
DAP 220/250 Combined I/O Module Field Wiring	336
DAP 220/250 Combined I/O Module Recovery After Error	338
DAP 220/250 Combined I/O Module Specifications	340

What is the DAP 220/250 Combined I/O Module

Brief Product Description

The DAP 220/250 is a 24 Vdc , discrete mixed eight-point input/eight-point output module. The DAP 250 functions just like the DAP 220 except that the DAP 250 operates at extended temperature.

Note: DAP 250 model is available with conformal coating. The conformal coating model is DAP 250C and it meets Railway standard EN 50155.

\triangle CAUTION
 Equipment Hazard
 Modicon recommends using two separate power sources with the DAP 220/250one for outputs and one for inputs-in order to avoid electrical switching noise.
 Failure to follow this instruction can result in injury or equipment damage.

Note: Inputs do not work if output supply is disconnected.

DAP 220/250 Combined I/O Module LEDs

LEDs The DAP 220/250 module has 19 LED displays. It has two green LEDs, one opposite terminal screw 1, which indicates when ON that working voltage is available to the group of eight discrete outputs directly below it, and one opposite terminal screw 12, which indicates when ON that working voltage is available to the group of eight discrete inputs below it. There is also an amber LED opposite terminal screw 2 that goes ON to indicate a short circuit or overload problem in the output group below it.
 There are 16 red LEDs. Eight LEDs are opposite terminal screws 3 ... 10; when ON, they indicate that the discrete outputs adjacent them are in an ON condition, and eight opposite terminal screws $14 \ldots 21$ which indicate when ON that the discrete inputs adjacent to them are in an ON condition.

A WARNING

Operational Hazard

If the short/overload protection device in the DAP 220/250 senses an error condition, the module becomes "unhealthy." When Executive Software Prom Combination 1001, Revision B, is installed in the 984 C951 PCB, all other outputs will retain their last healthy status, except the shorted/overloaded channel, until the failure is cleared. If Prom Combination 1002 or higher is installed, the healthy outputs may be manipulated at will.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

DAP 220/250 Combined I/O Module Field Wiring

Introduction The DAP 220/250 is a 24 Vdc , discrete mixed eight-point input/eight-point output module. The DAP 250 functions just like the DAP 220 except that the DAP 250 operates at extended temperature.

Note: DAP 250 model is available with conformal coating. The conformal coating model is DAP 250C and it meets Railway standard EN 50155.

| A CAUTION |
| :--- | :--- |
| Operational Hazard |
| Modicon recommends using two separate power sources with the DAP 220/250- |
| one for outputs and one for inputs-in order to avoid electrical switching noise. |
| Failure to follow this instruction can result in injury or equipment damage. |

Note: Inputs do not work if output supply is disconnected.

Wiring Diagram and Simplified Schematic for DAP 220/250

A wiring diagram and simplified schematic for the DAP 220/250 is provided below.

DAP 220/250 Combined I/O Module Recovery After Error

Instructions	The protective device will eventually recover from the fail state if the cause of failure is removed, and the module will become healthy. If the error condition still exists, it will cause the module to shut down again. To avoid damage to the module, the logic shown in the following diagrams may be used to clear the failed output.
Ladder Logic The following diagram is a DAP 220/250 Ladder Logic Example for Prom Combination 1001..	

40001
STAT
15

The STAT block will put the module health information for the 4 racks in registers 40012 ... 40015.

Coil 99 is turned ON when the module in Rack 2, Slot 3 becomes healthy.

If register 40100 is traffic copped to the DAP 220 in Rack 2, Slot 3, when it becomes healthy again the 0 in register 40100 will be written to the module.

The following illustration is a DAP 220/250 Ladder Logic Example for Prom Combination 1002.

40001
STAT
15

The STAT block will put the module health information for the 4 racks in registers 40012 ... 40015.

Coil 99 is turned OFF when the module in Rack 2, Slot 3 becomes unhealthy.

If register 40100 is traffic copped to the DAP 220 in Rack 2, Slot 3, when it becomes unhealthy, the 0 in register 40100 will be written to the module.

DAP 220/250 Combined I/O Module Specifications

Table of Specifications for DAP 220/250

The following table contains a list of DAP 220/250 combined I/O module specifications.

Module Topology	Number of Inputs	8
	Number of Outputs	8
	Number of Groups	2
	Points/Group	8
	Isolation	Each point opto-isolated from the I/O bus.
Power Supplies	External Source Requirement	$20 . .30 \mathrm{Vdc}$
	Internal Source Requirement	less than 60 mA @ 5 V from I/O bus
	Internal Power Dissipation	2 W (typical)
Input Characteristics	ON State Signal Level	+12 V ... +30 V
	OFF State Signal Level	-2 V ... +5 V
	Input Wetting Current	$\begin{aligned} & 7 \mathrm{~mA} @ 24 \mathrm{Vdc} ; 8.5 \mathrm{~mA} @ 30 \\ & \text { Vdc } \end{aligned}$
	Response Time	4 ms (typical)
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG

Output Characteristics	Operating Mode	True High
	ON State Signal Level	External Supply - 0.4V
	OFF State Signal Level	$0 \ldots 2 \mathrm{~V}$, less than 1mA
	Load Current/Output	$10 \mathrm{~mA} . . .2 \mathrm{~A}$
	Max Load Current/Group	8 A
	Response Time	less than 1 ms
	Reverse EMF Protection	Clamping diode recommended across inductive loads, or if load current exceeds 1A
	Switch Capacity for Bulbs OFF -> ON Operations @ Maxi mum Power	10W (Max Surge Current = Normal Current x 10) 1000/hour inductive load 100/s resistive load 10/s bulb load
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
Environmental Characteristics	Operating Temperature	0 ... 60 degrees C for DAP220 $-40 \ldots+70$ degrees C for DAP250
I/O Map	Discrete 1x/0x	$8 \mathrm{in} / 8$ out
Dimensions	WxHxD	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \\ & \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	220 g (. 48 lb.$)$
Agency Approvals	DAP 220: VDE 0160; UL 50; CSA 22.2 No.142; and FM Class I, Div 2 Standards	
	DAP 250C: Railway standard EN 50 155: EMC 89/336/EEC (See Requirements for CE Compliance, p. 857). UL 50; CSA 22.2 No.142; and FM Class I, Div 2 pending	

Overview of the DAP 253 Combined I/O Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 253 combined I/O module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 253 Combined I/O Module?	344
DAP 253 Combined I/O Module LEDs	345
DAP 253 Combined I/O Module Field Wiring	347
Protecting the DAP 253 Combined I/O Module from Inductive Back EMF	349
DAP 253 Combined I/O Module Specifications	351

What is the DAP 253 Combined I/O Module?

Brief Product Description

The DAP 253 is an extended temperature, $110 \mathrm{Vdc}+/-40$ percent, eight-point isolated input/four-point relay output module. The full operational range of this module is 66 ... 154 Vdc for inputs. Relay voltage and current ratings are documented in the specifications of this module. It senses eight discrete input signals received by field sensing devices such as pushbuttons, limit switches, or other dc input sources and converts those signals into logic that can be used by the PLC. It utilizes logic signals within the PLC to activate four independent and individually isolated normally open relay contacts.
The module requires power from an external 24 Vdc source to operate the relay outputs. The operating temperature range of this module, $-25 \ldots+70$ degrees C $(-13 \ldots+158$ degrees F), exceeds typical module operating temperatures of $0 \ldots 60$ degrees C .

Note: The DAP 253 model is available with conformal coating. The conformal coating model is DAP 253C.

DAP 253 Combined I/O Module LEDs

DAP 253 LEDs The DAP 253 module has two amber LEDs opposite terminal screws 1 and 12; when one of these LEDs is ON, it indicates power available to the input or output points directly below it. Below terminal screw 1 are four red LEDs opposite terminal screws $3,5,7$, and 9 indicating the signal condition of relay output points $1 \ldots 4$, respectively. Below terminal screw 12 are eight red LEDs opposite terminal screws 14 ... 21 indicating the signal condition of inputs $1 \ldots 8$, respectively.

A front view with DAP 253 label is provided below.

DAP 253 Combined I/O Module Field Wiring

Wiring Diagram A wiring diagram for the DAP 253 combined I/O module is provided below. for DAP 253

Simplified Schematic for DAP 253

A simplified schematic for the DAP 253 combined I/O module is provided below.

Protecting the DAP 253 Combined I/O Module from Inductive Back EMF

Instructions for DAP 253

Illustration of

 Clamping Diode and Snubber CircuitIn order to increase the service life of the relay output contacts and protect the DAP 253 module from potential reverse-EMF damage, externally connect a clamping diode in parallel with each inductive dc load and externally connect an RC snubber circuit in parallel with each inductive ac load.

The following illustration is an example of clamping diode and snubber circuit on inductive loads.

\qquad

Suggested Component Values

The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be three or four times greater than supply voltage at 24 Vdc and 8 ... 10 times greater than supply voltage at 110 Vdc . The unpolarized (ac) snubber capacitor should have a rating two or three times greater than the supply voltage.
Values may be:

Snubber Values	
Load Inductance	Capacitance
$25 \ldots 70 \mathrm{mH}$.50 microF
$70 \ldots 180 \mathrm{mH}$.25 microF
180 mH	.10 microF

An example of Operational Range Options Using 140 Vdc is provided below.

Calculations:
Given: Vcc= 140Vdc
$\mathrm{I}(\mathrm{Max})=.15 \mathrm{~A}$
Then: $\mathrm{R}(\mathrm{L})(\mathrm{Min})=140 / .15=1$ Kohm Since $L / R=.02$ Sec, and $R=1 \mathrm{Kohm}$ Then $L(M a x)=(.02) \times 1000=20 \mathrm{H}$

Voltage rating of diode $=1.5 \mathrm{XVcc}$
Current rating of diode $=2 \mathrm{XI}$ (Max)
Must be "slow", rectifier, vs logic

A shows the consequences of ohmic load and L / R ratios
B shows the application of the suppression diode
C shows the application of a current limiting resistor in series with the diode to protect the diode from contact bounce

Snubber resistors may be 1 ... 3 ohms, 2 W . Resistor values should be increased up to 47 ohms, $1 / 2 \mathrm{~W}$ for RL exceeding 100 ohms.

Note: To I/O Map the DAP 253 module in Modsoft you must select DAP 212. Both modules share a host driver and have similar characteristics.

DAP 253 Combined I/O Module Specifications

DAP 253
Specifications

The following tables and diagrams contain DAP 253 combined I/O module specifications.

Module Topology	Number of Inputs	8
	Number of Relay Outputs	4
	Number of Groups	1 in/4 out
	Points/Group	8 in/1 out
	Isolation	Relay output contacts individually isolated Input group isolated from output group
Power Supplies	External Source Requirement	$110 \mathrm{Vdc}+40$ percent, 20 mA @ $24 \mathrm{Vdc}, 70 \mathrm{~mA}$
	Internally Provided Source	5 V from l/O bus @ 15 mA maxi mum
	Internal Power Dissipation	2 W (typical)
Input Characteristics	Working Voltage Range	66 ... 154 Vdc
	ON State Signal Level	$55 . .170 \mathrm{~V}$
	OFF State Signal Level	-2 ... +10 V
	Input Current	2.2 mA (typical) @ 110 Vdc
	Response Time	6 ms (typical)
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
Environmental Characteristic	Operating Temperature	$\begin{aligned} & -25 \ldots+70 \text { degrees } C \\ & (-13 \ldots+158 \text { degrees } F) \end{aligned}$

DAP 253 Specifications (continued)

Output Characteristics	Output Voltage Ranges	24 ... $154 \mathrm{Vdc} ; 24 . . .250 \mathrm{Vac}$
	Operating Mode	Normally Open
	Response Time	10 ms (typical)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
	Load Currents @ 230 Vac	2 A continuous (maximum, resistive load) 4 A instantaneous (maximum, resistive load) 1 A continuous (maximum, $\mathrm{Cos}=0.5$) $1.5 \mathrm{~A} / 240 \mathrm{~V} \max (\mathrm{AC} 11, \mathrm{VDE}$ 0660, part 200)
	Load Current @ 24 Vdc	2 A continuous maximum (resistive load) 4 A instantaneous maximum (resistive load) 1 A continuous maximum ($\mathrm{L} / \mathrm{R}^{*}=30 \mathrm{~ms}$) $1.5 \mathrm{~A} / 240 \mathrm{~V}$ max ($\mathrm{DC} 11, \mathrm{VDE}$ 0660, part 200)
	Load Current @ 60 Vdc	1A continuous maximum (resistive load) 0.6 A maximum (L/R* $=30 \mathrm{~ms}$)
Output Characteristics Cont.	Load Current @ 140 Vdc	0.3 A continuous maximum (resistive load) 0.15 A maximum ($\mathrm{L} / \mathrm{R}^{*}=20 \mathrm{~ms}$)
	Wetting Current	5 mA for closed contacts
	Leakage	1 mA
	Internal Protective Circuitry	68 ohms +15 microF in parallel with each contact
	Overload Protection	Should be provided externally
I/O Map	Discrete 1x/0x	8 in/4 out
* L = Load Inductance in H; R = Load Resistance in ohms		
Service Life of Relay Contacts	Mechanical switching cycles	20,000,000
	Electric switching cycles (Resistive Loads)	7,000,000 @ 230 Vac/0.5 A 8,000,000 (typical) @ 30 Vdc/2 A, with clamping diode 1,000,000 (typical) @ 60 $\mathrm{Vdc} / 1 \mathrm{~A}$, with clamping diode, 3000 cycles/hr maximum
	Electric switching cycles (Inductive Loads, Cos = 0.5)	5,000,000 @ $230 \mathrm{Vac} / 0.5 \mathrm{~A}$

Diagram of Service Life for Resistive Loads.

SERVICE LIFE FOR RESISTIVE LOADS

The maximum number of switching cycles is reduced when inductive loads are encountered. Reference the load device manufacturer's catalog for steady state and inrush VA ratings to determine the number of operations derating factor. If the frequency of operations is relatively high, use the inrush VA to calculate Cos: Effective number of operations = \# of operations (resistive load) x reduction factor:

Graph of Reduction Factor for Inductive Loads.

Cos $=$ Watts divided by VA.

I/O Map	Discrete $1 \mathrm{x} / 0 \mathrm{x}$	$8 \mathrm{in} / 8$ out
Dimensions	WxHxD	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6$ $\times 4.5 \mathrm{in})$
	Weight	$240 \mathrm{~g}(.52 \mathrm{lb})$.
	DAP 253: European Directive EMC 89/336/EEC Standards	
	DAP 253C: Railway standard EN 50 155: European Directive EMC $89 / 336 / E E C ~ S t a n d a r d s . ~$	

Overview of the DAP 292
 Combined I/O Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAP 292 combined I/O module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAP 292 Combined I/O Module?	356
DAP 292 Combined I/O Module LEDs	357
DAP 292 Combined I/O Module Field Wiring	359
Protecting the DAP 292 Combined I/O Module from Inductive Back EMF	361
DAP 292 Combined I/O Module Specifications	363

What is the DAP 292 Combined I/O Module?

Brief Product Description

The DAP 292 is a 60 Vdc, eight-point isolated input/four-point relay output module. It senses eight discrete input signals received by field sensing devices-such as pushbuttons, limit switches, or other 60 Vdc sources-and converts those signals into logic that can be used by the PLC.

It utilizes logic signals within the PLC to activate four independent and individually isolated normally open relay contacts. The module requires power from an external 24 Vdc source to operate.

DAP 292 Combined I/O Module LEDs

> LEDs The DAP 292 module has two amber LEDs opposite terminal screws 1 and 12; when one of these LEDs is ON, it indicates power available to the input or output points directly below it. Below terminal screw 1 are four red LEDs opposite terminal screws $3,5,7$, and 9 indicating the signal condition of relay output points $1 \ldots 4$, respectively. Below terminal screw 12 are eight red LEDs opposite terminal screws 14 ... 21 indicating the signal condition of inputs $1 \ldots 8$, respectively.

A front view with DAP 292 label is provided below.

DAP 292 Combined I/O Module Field Wiring

Wiring Diagram A wiring diagram for the DAP 292 combined I/O module is provided below. for DAP 292

Simplified Schematic for DAP 292

A simplified schematic for the DAP 292 combined I/O module is provided below.

Protecting the DAP 292 Combined I/O Module from Inductive Back EMF

Instructions In order to increase the service life of the relay output contacts and protect the DAP 292 module from potential reverse-EMF damage, externally connect a clamping diode in parallel with each inductive dc load and externally connect an RC snubber circuit in parallel with each inductive ac load.

The following illustration is an example of clamping diode and snubber circuit on inductive loads.

\qquad

Suggested Component Values

The clamping diode forward current rating must be equal to or greater than load current. Diode PIV rating must be three or four times greater than supply voltage at 24 Vdc and 8 ... 10 times greater than supply voltage at 110 Vdc . The unpolarized (ac) snubber capacitor should have a rating two or three times greater than the supply voltage.
Values may be:

Snubber Values	
Load Inductance	Capacitance
$25 \ldots 70 \mathrm{mH}$.50 microF
$70 \ldots 180 \mathrm{mH}$.25 microF
180 mH	.10 microF

Snubber resistors may be $1 \ldots 3$ ohms, 2 W . Resistor values should be increased up to 47 ohms, $1 / 2 \mathrm{~W}$ for RL exceeding 100 ohms.

Note: To I/O Map the DAP 292 module in Modsoft you must select DAP 212. Both modules share a host driver and have similar characteristics.

DAP 292 Combined I/O Module Specifications

DAP 292 Tables and Diagrams

DAP 292 Specifications

Module Topology	Number of Inputs	8
	Number of Relay Outputs	4
	Number of Groups	2
	Points/Group	8 in/4 out
	Isolation	Relay output contacts individually isolated Input group isolated from output group
Power Supplies	External Source Requirement	$60 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum; $24 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum
	Internally Provided Source	5 Vdc from I/O bus; 25 mA maximum
	Internal Power Dissipation	2 W (typical)
Input Characteristics	Working Voltage Range	60 Vdc
	Signal Rated Value	+60 V
	ON State Signal Level	35 ... 70 V
	OFF State Signal Level	-4 ... +13V
	Input Current	7 mA at 60 V
	Response Time	4 ms (typical)
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG

DAP 292 Specifications (continued)

Output Characteristics	Output Voltage Ranges	24 ... $110 \mathrm{Vdc} ; 24$... 250 Vac
	Operating Mode	Normally Open
	Response Time	10 ms (typical)
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
	Load Currents @ 230 Vac	2 A continuous (maximum, resistive load) 4 A instantaneous (maximum, resistive load) 1 A continuous (maximum, $\mathrm{Cos}=0.5$) $1.5 \mathrm{~A} / 240 \mathrm{~V} \max (\mathrm{AC} 11, \mathrm{VDE} 0660$, part 200)
	Load Current @ 24 Vdc	2 A continuous maximum (resistive load) 4 A instantaneous max maximum (resistive load) 1 A continuous maximum ($\mathrm{L} / \mathrm{R}^{*}=30 \mathrm{~ms}$) $1.5 \mathrm{~A} / 240 \mathrm{~V}$ max (DC11, VDE 0660, part 200)
	Load Current @ 60 Vdc	1 A continuous maximum (resistive load) 0.6 A maximum ($\mathrm{L} / \mathrm{R}^{*}=30 \mathrm{~ms}$)
	Load Current @ 110 Vdc	0.45 A continuous maximum (re resistive load) 0.25 A maximum ($L / \mathrm{R}^{*}=30 \mathrm{~ms}$)
	Wetting Current	1 mA
	Internal Protective Circuitry	68 ohms +15 microF in parallel with each contact
	Overload Protection	Should be provided externally
I/O Map	Discrete 1x/0x	8 in/4 out
* L = Load Inductance in Henries; $\mathrm{R}=$ Load Resistance in Ohms		
Service Life of Relay Contacts	Mechanical switching cycles	20,000,000
	Electric switching cycles (Resistive Loads)	10,000,000 @ 230 Vac/0.2 A 7,000,000 @ 230 Vac/0.5 A $8,000,000$ (typical) @ $30 \mathrm{Vdc} / 2 \mathrm{~A}$, with clamping diode 1,000,000 (typical) @ $60 \mathrm{Vdc} / 1 \mathrm{~A}$, with clamping diode, 3000 cycles/hr max
	Electric switching cycles (Inductive Loads, Cos = 0.5)	5,000,000 @ $230 \mathrm{Vac} / 0.5 \mathrm{~A}$

Service Life for Resistive Loads

The maximum number of switching cycles is reduced when inductive loads are encountered. Reference the load device manufacturer's catalog for steady state and inrush VA ratings to determine the number of operations derating factor. If the frequency of operations is relatively high, use the inrush VA to calculate Cos: Effective number of operations = \# of operations (resistive load) x reduction factor:

Reduction Factor for Inductive Loads

REDUCTION FACTOR FOR INDUCTIVE LOADS
Cos $=$ Watts divided by VA.

I/O Map	Discrete $1 \times / 0 \mathrm{x}$	$8 \mathrm{in} / 8$ out
Dimensions	WxHxD	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6$ $\times 4.5 \mathrm{in})$
	Weight	$240 \mathrm{~g}(.52 \mathrm{lb})$.
	DAP 253: European Directive EMC $89 / 336 /$ EEC Standards	
	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards.	

DAU 202/252 Analog Output Module

At a Glance

Introduction This chapter describes the DAU 202/252 analog output module.
What's in this This chapter contains the following topics:
Chapter?

Topic	Page
What Is the DAU 202/252 Analog Output Module?	368
DAU 202/252 Analog Output Module Field Wiring	370
DAU 202/252 Analog Output Module Calibration	371
DAU 202/252 Analog Output Module Specifications	373

What Is the DAU 202/252 Analog Output Module?

Brief Product Description

The DAU 202/252 is a two-channel analog output module. Each channel supports voltages in the range $+10 \ldots-10 \mathrm{~V}$ and currents in the range $+20 \ldots-20 \mathrm{~mA}$. The operations of the DAU 202 and the DAU 252 are alike except for the DAU 252's ability to operate at extended temperatures. The output channels can be isolated individually. The valid output data range is from 0 ... 4000.

Note: The DAU 252 model is available with conformal coating. The conformal coating model is DAU 252C, and it meets Railway standard EN 50155.

Different PLC models support different temperature ranges. The following tables present the different PLC models and describe the voltage and temperature ranges that they support.
The following table lists operating information for the A984-1XX and E984-24x/251/ 255 PLC models.

Output Signals Voltage	Output Signals Current	Data Count (decimal)	Operating Results
-10 V	-20 mA	0	In Range
0 V	0 mA	2000	
+10 V	+20 mA	4000	
0 V	0 mA	4001	Over Range

The following table lists operating information for the E984-258/265/275/285 PLC models.

Voltage (VDC)	Current (mA)	12-bits	15-bits + sign	Range
$10.24 \ldots$ -10.005	$-20.48 \ldots$	0	-32768	Under-range
-10.00	-20.01	47	-32016	
0	-20.00	48	-32000	Nominal range
+10.00	0	2048	0	
$+10.005 \ldots$	+20.00	4048	+32000	
+10.24	$+20.01 \ldots$	4049	+32016	Overrange

LEDs The DAU 202/252 has two green LED indicators on its front panel:

- If the LED opposite terminal screw 1 is ON, user-supplied voltage is present.
- If the LED opposite terminal screw 12 is ON, a D/A conversion has occurred.

DAU 202/252 Analog Output Module Field Wiring

Introduction The DAU 202/252 can be field wired to two current output devices, to two voltage output devices, or to one current and one voltage device.

Wiring Diagram
The following illustration is a wiring diagram and simplified schematic for the DAU 202/252 analog output module.

DAU 202/252 Analog Output Module Calibration

Introduction By adjusting the four potentiometers on the top of the DAU 202/252 module, you can calibrate the gain and offset on each of the two analog channels over the absolute count range of the module (0 ... 4000).

The following illustration shows the location of the potentiometers on the ADU 202/ 252.

Procedure for Adjusting the Potentiometers

Use the following procedure to adjust the Potentiometers.t

Step	Action
1	Wire terminal 4 to the positive side and terminal 5 to the negative side of a voltmeter for analog channel 1 (as shown in the following figure.)
2	Enter 4000 into the module output register and adjust the channel 1 gain potentiometer (+10 V adjustment) for a reading of +10 V on the meter.
3	Enter 0 into the module output register and adjust the channel 1 offset potentiometer (-10 V adjustment) for a reading of -10 V on the meter.
4	Check module operation by entering 2000 into the module output register. The meter reading should be 0 V .
5	To fine-tune the calibration adjustment, you may want to repeat steps 2 ... 4 until you have your best reading. If you are satisfied with the reading, drop a bead of sealing varnish on the two readjusted potentiometers.
6	To calibrate analog channel 2 , wire terminal 15 to the positive side and terminal 16 to the negative side of the voltmeter, and repeat steps $2 \ldots 5$ of this procedure, this time making the adjustments to the gain and offset potentiometers for channel 2.

DAU 202/252 Analog Output Module Specifications

Table of Specifications

The following table lists the DAU 202/252 specifications.

Module Topology		
Number of Outputs	2 opto-isolated	700 V Channel-to-Channel
		700 V Channel-to-Bus
Data Format	Two's complement, left justified	
Power Supplies		
Internally Provided Source	5 V , less than 60 mA from the I/O bus	
External Source Requirement	$24 \mathrm{Vdc}, 150 \mathrm{~mA}$ maximum	
Internal Power Dissipation	2Ω (typical)	
Electrical Characteristics		
Voltage Output	+/-10 V greater than 5 k ohms	
Current Output	+/- 20 mA less than 500 ohms	
Over Range	Approximately 2.4 percent	
D/A Resolution	11 bits plus sign	
Wire Size	One wire: 14 AWG	
	Two wires: 20 AWG	
Accuracy		
Overall	+/- . 4 percent of full scale	
Output Error Range	+/- . 6 percent @ 0... 60 degrees C	
Update Interval	Approximately $2 \mathrm{~ms} /$ output	
Settling Time	$25 \mathrm{~ms} /$ output	
Environmental Characteristics		
Operating Temperature	0 ... 60 degrees C for DAU202 $-40 \ldots+70$ degrees C for DAU252	
I/O Map		
Register 3x/4x	$0 \mathrm{in} / 2$ out	
Dimensions		
W x H x D	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \times 4.5 \mathrm{in})$	
Weight	$300 \mathrm{~g}(0.6 \mathrm{lb})$	
Agency Approvals		
DAU202: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.		
DAU252C: Railway standard EN 50 155; European Directive EMC 89/336/EEC Standards. UL 508; CSA 22.2 No.142; and FM Class I, Div 2 pending.		

DAU 204 Analog Output Module

At a Glance

Introduction This chapter describes the DAU 204 analog output module.

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation if using certain PLCs (A984--1xx, E984--24x/251/255) with Modsoft.

A WARNING

DAU 204 module must be powered when in rack.
Do not leave this module unpowered in the rack. This may affect the proper operation of the CPU and other I/O modules.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

What's in this This chapter contains the following topics:

Chapter?

Topic	Page
What Is the DAU 204 Analog Output Module?	377
DAU 204 Analog Output Module Conversion Ranges	378
DAU 204 Analog Output Module Special Features	379
DAU 204 Analog Output Module Installation	381
DAU 204 Analog Output Module Switch Settings	382
DAU 204 Analog Output Module Field Wiring	385
DAU 204 Analog Output Module Configuration	390
DAU 204 Analog Output Module Custom Calibration	395
DAU 204 Analog Output Module Indicators	399
DAU 204 Analog Output Module Specifications	403

What Is the DAU 204 Analog Output Module?

Brief Product Description

The DAU 204 is a 4-channel analog output module designed to control adjustable frequency drives, positioning valves, dampers, and so forth. Each channel can provide either voltage or current loop output, in any one of the following ranges:

- 0 ... $1,0 \ldots 5$, or $0 \ldots 10 \mathrm{~V}$ and $+/-1,+/-5$, or $+/-10 \mathrm{~V}$
- 4 ... 20 or 0 ... 20 mA (sourcing)

Note: For proper operation, the module requires power from an external source (250 mA @ 24 Vdc). If an external source is NOT used, the module pulls power from the internal bus and gives a false green LED indication.

DAU 204 Analog Output Module Conversion Ranges

Overview Different PLC models require different voltage ranges. The following tables present the different PLC models and describe their power requirements and capabilities. Refer to Controlling Output Signal Levels, p. 393 for ranges for A984- 1XX and E984-24x/251/255 PLC models.

Conversion Ranges

The following table lists voltage range information -- 0 ... 1 VDC, 0 ... 5 VDC, 0 ... 10 VDC -- for E984- 24x/258/265/275/285 PLC models.

$\mathbf{0} \ldots \mathbf{1}$ VDC	$\mathbf{0} \ldots \mathbf{5}$ VDC	$\mathbf{0} \ldots \mathbf{1 0}$ VDC	11-bits	12-bits	15-bits +sign	16-bits	Range
0	0	0	0	0	0	0	Nominal
0.5	2.5	5	1024	2048	16000	32768	
1	5	10	2047	4095	32000	65520	

The following table lists voltage range information -- 0/4 ... 20 mA -- for E984-58/ 265/275/285 PLC models.

$\mathbf{0} \ldots \mathbf{2 0} \mathbf{~ m A}$	$\mathbf{4} \ldots \mathbf{2 0} \mathbf{~ m A}$	11-bits	12-bits	15-bits + sign	16-bits	Range
0	4	0	0	0	0	
10	12	1024	2048	16000	32768	Nominal range
20	20	2047	4095	32000	65520	

The following table lists voltage range information -- +/- 1 VDC, +/- 5 VDC, +/- 10 VDC -- for E984- 258/265/275/285 PLC models.

$+/-1$ VDC	+/- $\mathbf{5}$ VDC	+/- 10 VDC	11-bits	12-bits	15-bits + sign	16-bits	Range
-1	-5	-10	0	0	-32000	0	
0.5	2.5	0	1024	2048	0	32768	Nominal range
+1	+5	+10	2047	4095	+32000	65520	

DAU 204 Analog Output Module Special Features

Special Features The DAU 204 module provides the following features:

- 4 independently configurable channels (i.e., the DAU 204 can provide any combination of voltage and current outputs)
- Group-to-group isolation (channel 1 and 2 are optically and magnetically isolated from channels 3 and 4) to 500 Vac
- True 12-bit resolution (0 ... 4095) on all scales
- High accuracy (+/-0.2 percent of full scale @ 25 degrees C)
- Open current loop (broken wire) detection and warnings via LEDs and registers
- Software calibration (no potentiometers)
- Built-in diagnostics

An additional special feature of the DAU 204 is the outputs. For detailed information, see Conversion Ranges, p. 378.

The following figure shows a front view with the DAU 204 label.

DAU 204 Analog Output Module Installation

Overview The following information describes preparatory tasks to complete before you install the DAU 204.

Before You Install the Module

Before installing the DAU 204, be sure to complete the following items:

- Set the DIP switches.
- Field wire the terminal blocks.

For detailed information about how to complete these tasks, see DAU 204 Analog Output Module Switch Settings, p. 382.

\triangle CAUTION

You must observe all rack and module power state requirements.
Never insert or remove the DAU 204 from the rack while the rack is powered up or while the module is connected to an external power source or active output device. Failure to observe this precaution can result in equipment damage.

Failure to follow this instruction can result in injury or equipment damage.

Note: After installing the DAU 204, you must load the DAU 204 software driver (SVI.DAT Rev 3, or higher) and set at least one output range via I/O Mapped register (40xxx+4). These registers are described in DAU 204 Analog Output Module Configuration, p. 390.

DAU 204 Analog Output Module Switch Settings

$$
\begin{array}{ll}
\text { Overview } & \text { Setting DIP switches must be done before the DAU } 204 \text { can be installed. The } \\
\text { following information describes how to perform these tasks. For general information } \\
\text { about setting DIP switches on the DAU 204, see DAU } 204 \text { Analog Output Module } \\
\text { Installation, p. 381. }
\end{array}
$$

Abstract

\triangle CAUTION You must observe all rack and module power state requirements. Never change DIP switch settings while the rack is powered or while the module is connected to an external power source or active field device. Failure to observe this precaution can cause unintended equipment operation. Failure to follow this instruction can result in injury or equipment damage.

Setting DIP This procedure describes how the dip switches are set. Switches

Step	Action
2	Select the output mode for each channel by properly setting the DIP switches (Refer to the preceding figures.) The DIP switch poles located at the top of the module control channels 1 and 2. The switches located on the bottom of the module control channels 3 and 4. Notice that channel 1 is set using poles $1 \& 2$, and channel 2 is set using poles $3 \& 4$; but channel 4 is set using poles $1 \& 2$, and channel 3 is set using poles $3 \& 4$.

Settings for Unused Channels
 It is recommended that unused channels be set to voltage mode. This setting shuts off the red LED current loop error indicator and alarm bit. Alternatively, unused current output channels should be shorted.
 You must use both poles together to properly set a channel's mode; not doing so will generate invalid results.

DAU 204 Analog Output Module Field Wiring

Introduction For this module, use 60/75 copper (Cu) for the power connections and $4.5 \mathrm{in}-\mathrm{lb}$. of torque for the set screws.

To prevent errors in field device operation, follow these guidelines:

- Use shielded, twisted-pair cable (such as Belden 9418).
- Ground the shield of each signal cable at the DAU 204 only. At the other end each signal cable, peel back the shield and insulate it from contact with the signalcarrying wires.
- Route each signal cable as far as possible from sources of electrical noise (such as motors, transformers, contactors and especially AC devices).
- Route the signal cables in a conduit different from the AC and power cables.
- If the signal cables must cross AC or power cables, ensure that they cross at right angles.
- When connecting field devices to the module, keep the unshielded portions of the signal-carrying wires as short as possible.

After wiring the terminal blocks, use the supplied keys to prevent the blocks from being switched inadvertently.

A WARNING

Module must be powered while in rack.
Do not leave this module unpowered in the rack. This may affect the proper operation of the CPU and other I/O modules.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

Wiring Diagram The following illustration is a wiring diagram and simplified schematic for the DAU

 204 analog output module.

\triangle CAUTION

Observe all precautions when configuring a channel for current output.
When you configure a channel for current output, do not connect anything to that channel's voltage output terminals (and vice versa). Failure to observe these precautions can cause unintended equipment operation.

Failure to follow this instruction can result in injury or equipment damage.

Note: We recommend that you connect the DAU 204 to the same 24 Vdc power supply used to power the PLC (even if the DAU 204 is in the rack but not being used). If this is not possible, we recommend that you supply power to the PLC before the DAU 204 using a power supply similar to the P120 (quick startup voltage). Failure to observe this precaution can cause abnormal operation.

Note: Ensure that voltage loads driven by the module can tolerate transients during rack and module startup. During startup, transients as great as 2 V may appear on the voltage output terminals for as long as 5 ms due to the characteristics of semiconductor devices. This does not occur with the module's current output terminals.

Note: Terminals 3,5, 9 and 11 (- current out, and - voltage out) are internally tied as a group. Terminals 14, 16, 20 and 22 (- current out, and - voltage out) are internally tied as a group. Be sure not to cross groups.

Note: You should short all unused current output terminals to disable the red current loop LEDs and alarm bits.

The following table lists terminal descriptions.

Terminal	Channel	Description
1		+ 24 Vdc (required)
2	1	+ current out - current out + voltage out - voltage out shield 1
3		
4		
5		
6		
7	2	shield 2
8		+ current out
9		- current out
10		+ voltage out
11		- voltage out
12		24 V common
13	3	+ current out
14		- current out
15		+ voltage out
16		- voltage out
17		shield 3

Terminal	Channel	Description
18	4	shield 4
19		+ current out
20		- current out
21		+ voltage out
22		- voltage out

The following illustration is an example of the DAU 204 wired for voltage output on channels 1 and 3 and current output on channels 2 and 4.
0.5 A Slo-Blo Fuse Recommended

The DIP switch settings for this configuration are shown in the following illustration.

Group 1 DIP Switch (Top of Module)		Group 2 DIP Switch (Bottom of Module)	
	OFF (open = 0)		OFF (open = 0)
1234	ON (closed = 1)	1234	ON (closed = 1)

An example of the DAU 204 wired for current output on all channels (1 through 4) is shown in the following illustration. Turn all DIP switch poles off for this configuration.

For example, to select current output for channels 1 and 3, and current output for channels 2 and 4, set the DIP switch poles as shown in the following illustration.

Group 1 DIP Switch
(Top of Module)

Group 2 DIP Switch (Bottom of Module)

\square	OFF (open $=0$)
1234	$\mathrm{ON}($ closed = 1)

DAU 204 Analog Output Module Configuration

Introduction The DAU 204 is configured using the I/O map and its input and holding registers.
 I/O Mapping The DAU 204 uses one 30xxx input register and six 40xxx output registers, I/O mapped as binary (BIN) data.

Note: A software loadable driver (SVI.DAT, Revision 3, or higher) is required to operate this module.

The registers and their functions used by the DAU 204 are shown in the table below, with more details following.

Registers and their functions	
$30 x x x$	Module status word
$40 x x x$	Channel 1 data, output signal levels, 12 bit
$40 x x x+1$	Channel 2 data, output signal levels, 12 bit
$40 x x x+2$	Channel 3 data, output signal levels, 12 bit
$40 x x x+3$	Channel 4 data, output signal levels, 12 bit
$40 x x x+4$	Control word 0, range select (NOT avail able for E984-258/265/275/285 PLCs)
$40 x x x+5$	Control word 1, fault state

From the I/O Map screen in Modsoft, you can call up the built-in help screens by highlighting DAU 204 and pressing <ALT><H>.

Setting Output Ranges

Output register 40xxx +4 controls the output range for each channel.
Output Register 40XXX $\mathbf{+} 4$ (range select)

0	0	0	$(0$ hex $)$	$=4 \ldots .20 \mathrm{~mA}$
0	0	1	$(1$ hex $)$	$=0 \ldots .20 \mathrm{~mA}$
0	1	0	$(2$ hex $)$	$=0 \ldots 1 \mathrm{~V}$
0	1	1	$(3$ hex $)$	$= \pm 1 \mathrm{~V}$
1	0	0	$(4$ hex $)$	$=0 \ldots 5 \mathrm{~V}$
1	0	1	$(5$ hex $)$	$= \pm 5 \mathrm{~V}$
1	1	0	$(6$ hex $)$	$=0 \ldots 10 \mathrm{~V}$
1	1	1	$(7$ hex $)$	$= \pm 10 \mathrm{~V}$

Note: When using E984-258/265/275/285 PLCs the output ranges are selected using the Parma ... screen in Concept, not the $4 \mathrm{x}+4$ register.

Enabling Hold-Last-Value

Bits 9 through 12 of output register 40xxx +5 control how the DAU 204 responds to the following fault conditions:

- Communications with the PLC is lost for more than 1 second.
- The PLC is in stopped mode or power is lost.

The following is an illustration of the Enable-Hold-Last-Value Register.
Bits 9... 12 of Output Register 40XXX = 5 (enable hold-last-value)

Note: When using E984-258/265/275/285 PLCs the hold-last-value is selected using the Parma ... screen in Concept.

For example, if channel 1 is configured for $4 \ldots 20 \mathrm{~mA}$ operation, and bit 9 of register $40 x x x+5$ is set to 0 (bottom of scale), channel 1 will output 4 mA if communication with the PLC is lost. However, if bit 9 were set to 1 (hold last value), channel 1 would output the same signal (value) that was output when communication was lost.

Output registers 40xxx through 40xxx + 3 control the output signal levels on channels 1 through 4, respectively.
The table below shows how the data in these registers correspond to the output signal for each output range. Register values above 4095 are treated as 4095.

A984-1xx, E984-24x/251/255 PLC Models			
Register Value (decimal)	Unipolar Voltage Output Signal		
	0... 1 V	$0 \ldots 5 \mathrm{~V}$	0... 10 V
0	0	0	0
2047	0.5	2.5	5
4095	1	5	10
	Bipolar Voltage Output Signal		
	+/-1 V	+/-5 V	+/-10 V
0	-1	-5	-10
2047	0	0	0
4095	1	5	10
	Current Output Signal		
	0... 20 mA	$4 \ldots 20 \mathrm{~mA}$	
0	0	4	
2047	10	12	
4095	20	20	

\triangle CAUTION

Operational Hazard

Before bringing field devices on-line, always ensure that you know the value in the registers that control each output channel so that the field devices do not begin operation without your understanding.
Failure to follow this instruction can result in injury or equipment damage.

Monitoring the Module

Input register 30xxx can be used to monitor the DAU 204.

Input Register 30XXX (module status)

A current error indicates an open current loop (broken wire) or a high loop impedance (greater than 500 ohms). Check the field wiring. A module error indicates a fault within the module. Try restarting the module. If the fault continues, call Technical Support at 1-800-468-5342.

DAU 204 Analog Output Module Custom Calibration

Introduction This procedure is recommended for expert users only. All DAU 204 modules are carefully calibrated at the factory, so the procedure described below is needed only if you want to alter the module's calibration for a special application.

Depending on the accuracy desired, this procedure should take less than half an hour. To calibrate the DAU 204, the following materials are needed:

- Processor
- Rack
- Power supply
- Programming software (Modsoft) and computer
- Cable (preferably, shielded, twisted pair cable, such as Belden 9418)
- Multimeter with current measuring capability

Calibrating the Module

To calibrate the DAU 204 analog output module:

Step	Action
1	Properly install and configure the module for the intended application See DAU 204 Analog Output Module Installation, p. 381 and Controlling Output Signal Levels, p. 393.
2	Set the output data register for the channel you want to calibrate to 4095 decimal (for example, to calibrate channel 1, set output register 40xxx to 4095).
3	Using the multimeter, measure the output for the channel being calibrated.
4	Using output register 40xxx + 5 (defined in the figure below), adjust the output upward or downward. Refer to the channel gain table below for the op codes to use. Note: When using E984-258/265/275/285 PLCs the channel calibration is selected using the Parma ... screen in Concept.
5	When the output equals the top of the desired range (for example, 20 mA for 4 ... 20 mA operation), set output register 40xxx +5 to 0000 hex to stop the output movement.
6	Set the output data register for the channel you want to calibrate to 0 (for example, to calibrate channel 1, set output register 40xxx to 0).
7	Using output register 40xxx + 5, adjust the output upward or downward. Refer to the channel offset table below for the op codes to use.
8	When the output equals the bottom of the desired range (for example, 4 mA for 4 ... 20 mA operation), set output register 40xxx + 5 to 0000 hex to stop the output movement.
9	Repeat steps 2 through 8 until you've achieved the desire accuracy. Repeat these steps for each channel, as desired. To store the calibration in EEPROM, set output register 40xxx + 5 to 8011 hex.

Channel Calibration

The following is an illustration of the Channel calibration register.
Bits 1... 8 of Output Register 40XXX + 5 (channel calibration)
1 = Enable calibration \qquad
Calibrate Ch. $1=0 \quad 0$
Calibrate Ch. $2=0 \quad 1$
Calibrate Ch. $3=1 \quad 0$
Calibrate Ch. $4=1 \quad 1$

Code Tables

The following table gives Op codes to adjust channel gain (span) upward or downward.

	Upward	Downward
Channel 1	OOA1 hexadecimal	0061 hexadecimal
Channel 2	OOA3 hexadecimal	0063 hexadecimal
Channel 3	OOA5 hexadecimal	0065 hexadecimal
Channel 4	00A7 hexadecimal	0067 hexadecimal

The following table gives Op codes to adjust channel offset (zero) upward or downward.

Op codes to adjust channel offset (zero) upward or downward		
	Upward	Downward
Channel 1	0091 hexadecimal	0051 hexadecimal
Channel 2	0093 hexadecimal	0053 hexadecimal
Channel 3	0095 hexadecimal	0055 hexadecimal
Channel 4	0097 hexadecimal	0057 hexadecimal

Note: When you replace the module, you will need to perform this procedure again.
To return a channel to an uncalibrated state (before factory calibration i.e. within 10 percent of full scale of voltage range), set output register 40xxx + 5 to the appropriate op code shown in the table below.

Op codes to return channel to	
uncalibrated state	
Channel 1	0009 hexadecimal
Channel 2	$000 B$ hexadecimal
Channel 3	000 D hexadecimal
Channel 4	000F hexadecimal

DAU 204 Analog Output Module Indicators

LEDs The DAU 204 analog output module has three types of LEDs:

- Amber LED -- provides information about the health of the module
- Green LEDs -- provide information about the readiness of the module
- Red LEDs -- provide information about the integrity of each channel (in current mode only)
This chapter explains how to use these and other diagnostic tools to determine the status of the DAU 204 module, and to identify and solve problems if necessary.
Amber LED The amber LED on the front of the module provides status information about the health of the module. A flashing amber LED indicates a fault in at least one of the following areas:
- Module Watchdog Circuit Fault
- Module Watchdog Circuit Fault at Startup
- Module RAM Failure at Startup
- Bus Interface Failure at Startup
- Module ROM Failure
- Module Processor Fault at Startup
- General Module Error
If the amber LED begins flashing, try restarting the module. If the flashing continues, call Technical Support at 1-800-468-5342.

Green LEDs

Red LEDs
The green LED at the top of the module provides status information about the module's readiness. The remaining green LEDs provide status information about the activity on each channel.

After the module is powered up, the green LED at the top of the module should begin flashing. If not, check the power source and connections.

Note: The DAU 204 requires power from an external source (250 mA @ 24 Vdc) to operate. When an external source is NOT used the module pulls power from the internal bus gives a false green LED indication.

A WARNING
 Operational Hazard
 Do not leave this module unpowered in the rack. This may affect the proper operation of the CPU and other I/O modules.
 Failure to follow this instruction can result in death, serious injury, or equipment damage.

Next, after the module has established communications with the PLC, the green LED at the top of the module should stop flashing and remain on. If not, ensure that the PLC has been powered up.
The remaining green LEDs should remain on or flash quickly as data is sent over each channel. If these green LEDs ever go off, check the power source and connections.

The red LEDs provide status information about each channel's integrity in current mode only. A flashing or steady red LED indicates an open current loop (broken wire) or a high loop impedance (greater than 500 ohms). Red LEDs do not function in voltage mode.

Invalid Data If the module seems to be providing invalid output data:

- Check wiring connections and integrity, DIP switch settings, and register settings.
- Verify the integrity of the field device.
- Make sure the signal cables are not placed on or near high-voltage (120 Vac or higher) cables. If the signal cables must cross high-voltage cables, ensure that the signal cables cross the high-voltage cables at right angles.
If electrical interference seems to be the problem, try placing the module as far as possible from power supplies and relay output modules. These products may generate electrical interference during operation. This interference would not affect the module but may induce noise on the channel wiring.

To stop the built-in tests, simply reset output register $40 \mathrm{xxx}+5$ to 0000 hexadecimal.

A CAUTION

Operational Hazard

Before performing these tests, disconnect any field devices from the DAU 204. Failure to observe this precaution can cause unintended equipment operation.

Failure to follow this instruction can result in injury or equipment damage.

Note: When bits 13, 14, or 15 of the output register $40 x x x+5$ are set to 1 , the green LED flashes continuously until these bits are reset to 0 . After resetting these bits to 0 , the module should be restarted.

Note: When using E984-258/265/275/285 PLCs the built-in tests are selected using the Parma ... screen in Concept.

If the DAU 204 fails any of these tests (amber LED flashes), restart the module. If it continues to fail, call Technical Support at 1-800-468-5342.

DAU 204 Analog Output Module Specifications

Table of Specifications

The following table provides DAU 204 Specifications.

Module Topology	Number of Channels	4
	Number of Groups	2
	Points per Group	2
Operating Voltage Ranges	Bipolar	+/-1, +/-5, +/-10 Vdc
	Unipolar	$0 \ldots 1,0$.. 5, $0 \ldots 10 \mathrm{Vdc}$
Operating Current Ranges	Unipolar	0 ... 20, 4 ... 20 mA
Power Supply	External Supply	250 mA @ 24 Vdc
	Internal Power Supply (via system bus)	less than 1 mA (TTL loading)
Required Loadable	SW-IODR-001	
Isolation	Channel 1, 2 to Channel 3, 4	500 V @ 60 Hz
	Channel to Bus	500 V @ 60 Hz
	Channel 1 to 2 and 3 to 4	Not Isolated
Line/Load Impedance	Voltage Output	greater than or equal to 20,000 ohms
	Current Output	less than or equal to 500ohms, less than or equal to 50 mH ; No max. capacitance but can slew output
Resolution	12 bit (0 ... 4095)	
Accuracy	+/-0.200 percent Full Scale Reading @ 25 degrees C	
Accuracy Drift w/ Temperature	Current Output	+/-0.002 percent FSR/ degrees C typical
		+/-0.005 percent FSR/ degrees C maximum
	Voltage Output	+/-0.006 percent FSR/ degrees C typical
		+/-0.0135 percent FSR/ degrees C maximum
Update Time	5 ms per channel maximum	
Fault Detection	Open current loop (broken wire in current mode)	
MTBF	100,000 hours, minimum, @ 30 degrees C, ground base fixed	
EMI Susceptance	$27 . . .500 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$	

Electrostatic Discharge	8 kV	
Fast Transient (IEC 801-4)	+/-1.0 kV	
Surge Withstand	2 kV (Transients, IEC 801-5)	
Operating Conditions	Temperature	0 ... 60 degrees C (32 ... 140 degrees F)
	Humidity	95 percent RH noncondensing @ 60 degrees C
	Chemical Interactions	Can be damaged by strong alkaline (pH greater than 7) solutions
	Vibration	10 ... 57 Hz @ 2 Gs
Storage Conditions	Temperature	$\begin{array}{\|l\|} \hline-40 \ldots 85 \text { degrees C } \\ (-40 \ldots . .185 \text { degrees } F) \\ \hline \end{array}$
	Free Fall	1 m (approx. 39 in)
I/O Map	Register 3x/4x	$\begin{aligned} & 1 \text { in/6 out } \\ & 1 \text { in/5 out for (E984-258/265/ } \\ & 275 / 285 \text { Only) } \end{aligned}$
Material	Lexan (Enclosures and Bezels)	
Space Required	1 A120 SMS rack slot	
Dimensions (WxHxD)		$40.3 \times 145.0 \times 117.5 \mathrm{~mm}$
		$1.60 \times 5.60 \times 4.50$ in
Weight, Maximum		453 g ,
		1 lb .
Agency Approvals	UL 508; CUL; FM Class I, Div 2; and European Directive EMC 89/336/EEC (See Requirements for CE Compliance, p. 857) Standards	

Overview of DAU 208 Analog Output Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DAU 208 analog output module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DAU 208 Analog Output Module?	406
DAU 208 Analog Output Module Conversion Ranges	407
DAU 208 Analog Output Module Physical Characteristics	408
DAU 208 Analog Output Module Configuration	411
DAU 208 Analog Output Module Field Wiring	412
DAU 208 Analog Output Module Calibration	413
DAU 208 Analog Output Module Specifications	416

What is the DAU 208 Analog Output Module?

Brief Product Description
 The DAU 208 is an eight-channel +/-10 V analog output module with opto-isolation. Digital-to-analog conversions are performed by a single converter, sequentially multiplexed to the eight output circuits. Outputs are short circuit-proof, and reset themselves after the short is removed.
 The DAU 208 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided.

C WARNING
Operational Hazard
The DAU 208 module will only operate properly when used with an A984, E984, or
Micro 512/612 controller.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

A WARNING

Operational Hazard
The DAU 208 module will only operate properly when used with an A984, E984, or Micro 512/612 controller. equipment damage.

DAU 208 Analog Output Module Conversion Ranges

Conversion Ranges	The PLC model determines the available ranges. Refer to the table below. ranges for the A984-1xx/24x/251/255 PLC models are in DAU 208 Analog Module Specifications, p. 416.			
	+/-10 VDC for E984-258/265/275/285 PLC Models			
	+/-10 VDC for E984-258/265/275/285 PLC Models			
	+/-10 VDC	12-bits	15-bits + sign	Range
	-10.24 ...	0	-32768	Under-range
	-10.005	47	-32016	
	-10.00	48	-32000	Nominal range
	0	2048	0	
	+10.00	4048	+32000	
	+10.005 ...	4049	+32016	Overrange
	+10.24	4095	+32752	

DAU 208 Analog Output Module Physical Characteristics

LEDs
The DAU 208 has two green LEDs:

- Opposite terminal \#1, indicating the presence of user-supplied 24 Vdc power (ON = power supplied; OFF = power off)
- Opposite terminal \#12, indicating operation of the dc-dc converter that powers the D/A circuitry (ON = Ready; OFF = Fault)

A front view with DAU 208 label is provided below.

Simplified Schematic

DAU 208 Analog Output Module Configuration

I/O Mapping
 The DAU 208 must be I/O Mapped as eight 4x output registers, and BIN must be set for data type.

Cabling

Connection and
Assignment of Output Addresses

- Shielded, twisted pair cable (2 or $4 \times 0.5 \mathrm{~mm} /$ channel) should be used; all channels can be connected with a common shielded cable.
- Connect shield to ground (GND) on one side with a short cable (less than 8 in .).
- Observe a minimum distance of 20 in between the module and power lines or other sources of electrical disturbance.

Note: Detailed Compact 084 cabling and instalation instructions are found in the 984-A120 Compact Programmable Controllers User Guide (890 USE 10800 formerly GM-A984-PCS).

DAU 208 Analog Output Module Field Wiring

Wiring Diagram for DAU 208

After conversion by the DAU 208, words 1 ... 8 are shown as analog values at their respective addresses $1 \ldots 8$, as shown in the following illustration.

DAU 208 Analog Output Module Calibration

Introduction

A CAUTION

Calibration Caution

Modicon recommends that units requiring recalibration be returned to the factory, since inaccuracies could be due to faulty components. However, users who wish to perform their own calibration should use the following procedure.
Failure to follow this instruction can result in injury or equipment damage.
By adjusting the two potentiometers located on the top of the DAU 208 module, you can calibrate both the plus and minus ranges for the eight output channels.

Location of
DAU 208
Potentiometers

The following illustration shows the location of the potentiometers on the DAU 208.

In this procedure, R4 is used to calibrate the plus output voltage ranges, and R3 is used to calibrate the negative ranges and the zero point. The third potentiometer mounted opposite R3 on a separate PCB is factory preset and should not be adjusted. Its purpose is to establish voltage outputs of the DC-DC supply that powers the module's D/A converter.

Items required for calibration are:

- A 3.3 kW Precision Register
- A Voltmeter with appropriate scale and accuracy of 0.2 ... 0.5 PPM.

Calibrating the
Analog Output Channels

Take the following steps to calibrate the analog output channels.

Step	Action
1	Connect the 3.3 k ohms Resistor across Channel 1. Connect the voltmeter across the 3.3 k ohms Resistor and load the Channel 1 register with 4048 decimal. Adjust R4 for a reading of $+10 \mathrm{Vdc}(+/-0.5 \mathrm{mV})$ on the voltmeter.
2	Load the Channel 1 register with 48 decimal. Adjust R3 for a reading of -10 Vdc $(+/-0.5 \mathrm{mV})$ on the voltmeter.
3	Load the Channel 1 register with 2048 decimal. Adjust R3 for a reading of 0 Vdc $(+/-0.5 \mathrm{mV})$ on the voltmeter.
4	Move the resistor and voltmeter to the other channels and check outputs. Zero output points should be within $+/-2 \mathrm{mV}$, and $+/-10$ Vdc outputs within $+/-7 \mathrm{mV}$.
5	When satisfied with the readings on all eight channels, drop a bead of sealing varnish on both potentiometers' adjusting screws to secure their settings.

DAU 208 Analog Output Module Specifications

Table of Specifications

The following table contains a list of DAU 208 specifications.

Module Topology	Number of Out puts	8	
	Isolation	Channel-to-Bus	700 Vdc
		Channel-to-External Supply	700 Vdc
	Voltage Output	+/-10 V, greater than 3.3 k ohms	
	Maximum Load Current	3 mA	
	Max. Short Circuit Current	20 mA	
Power Supply	External	$24 \mathrm{Vdc}, 120 \mathrm{~mA}$ maximum	
	Internally Provided Source from I/O bus	$5 \mathrm{Vdc}, 30 \mathrm{~mA}$ maximum	
	Power Dissipation	3Ω	
Voltage Output Capabilities	Linear Measuring Range Conversion Values for the DAU208 A9841xx, E984-24x/251/255 PLC Models Only		
	Analog Value	Decimal Value	Comments
	-10.24	0	
	-10.00	48	
	-5.00	1048	
	-1.00	1848	
	-0.50	1948	
	-0.10	2028	
	-0.01	2046	
	-0.005	2047	Linear Range
	0.00	2048	
	+0.005	2049	
	+0.01	2050	
	+0.10	2068	
	$+0.50$	2148	
	+1.00	2248	
	+5.00	3048	
	+10.00	4048	
	+10.24	4095	

A/D Conversion	Conversion Time for All Outputs	1 ms maximum
	Resolution	11 bits plus sign
	Overrange	$+/-2.4 \%$ (maximum +/-10.24 V)
	Overall Error	$+/-0.1 \%$ @ $0 \ldots 605 \mathrm{C}$
I/O Map	Register $1 \times / 0 \mathrm{x}$	$0 \mathrm{in} / 8$ out
Dimensions	W x H x D	$40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \times 4.5 \mathrm{in})$
	Weight	$350 \mathrm{~g} \mathrm{(.77} \mathrm{lb)}$.
Agency Approvals	VDE 0160; UL 508; CSA 22.2 No. 142 and FM Class I, Div 2 Standards	

Note: If Power is removed from A984 or stopped, the outputs will go to a no output condition.

DEA 202 InterBus S Interface Module

At a Glance

Introduction This information in this chapter describes the DEA 202 InterBus S Interface Module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
DEA 202 Features and Functions	420
Configuration of the DEA 202	423
DEA 202 LEDs	427
DEA 202 Specifications	428

DEA 202 Features and Functions

Product Overview

The DEA-202 enables A120 series I/O modules to connect to the remote bus in an INTERBUS configuration. For the INTERBUS master, the DEA module is a remote node that can address up to 18 I/O modules ($288 \mathrm{I} / \mathrm{Os}$) via the subracks AS- HDTA200, AS- HDTA 201 or AS- HDTA 202.

The DEA 202 comes with an integrated (non-isolated) power supply. It provides a 5 VDC supply at 1.6 A for the modules on the parallel I/O bus.

The following figure shows the DEA 202 INTERBUS topology.

A CAUTION

Addressing errors.

The DEA 202 module may cause addressing errors in INTERBUS configurations of generation 4. For this reason the DEA 202 must not be used together with INTERBUS Controller Boards of generation 4.

Failure to follow this instruction can result in injury or equipment damage.

Features

Functional Details

Watchdog

The following list identifies key features of the DEA 202.

- Coupling module with integrated power supply.
- With the exception of intelligent modules, all analog and discrete Compact I/O modules can be employed.
- The DEA 202 requires 1 word of the packet length for private data. Consequently, a maximum of 31 words remains available for use by the INTERBUS.
- DIP switch default adjustment: Disconnection behavior as well as status and control word processing.

The module serves as the coupling element between the remote bus (CPU connection) and PAB (connection to the I/O modules).

The undervoltage monitoring signal from the primary and secondary voltages is evaluated internally by the module.

The watchdog is a self-monitoring feature of the DEA. It consists of a monoflop with a delay time of about 320 ms . The DEA firmware performs an interrupt triggered control of the monoflop. After successfully powering on, which includes a successful EPROM check and initialization, the monoflop is triggered during program execution.

The delay time of the monoflop cannot be changed. The green "ready" (watchdog) LED goes off if cycle times are greater than the monoflop's delay time. This condition activates the disconnection behavior as determined by DIP switches S2 \& S3.

Module Faults

The DEA 202 collects messages from the associated modules and reports these to the master as module faults (refer to the "DEA 202 Status and Fault Messages" section of the INTERBUS Quantum 140 NOA 61100 User Manual (P/N 840 USE 419 00).

The following figure shows the DEA 202 front view and label.

Configuration of the DEA 202

Overview

DIP Switch Location and Settings

The following information describes how to configure the DEA 202.

The following figure shows the location and settings for the DIP switch.

Note: For DEA 202 operation with the 140 NAO 611 00, all DIP switches (S0 ... S3) must be in the "OFF" position.

The following figure shows the status processing switch settings.

OFF ON		OFF ON	
S3			3
S2			2
S1			1
\square So	Analog value processing with status and parameter*	\square	so Analog value processing without status and parameter

Status
Processing (SO)

Control Word Processing (S1)

OFF ON
The following figure shows the control word processing switch settings.

S3
S2
S1 DEA control word active.
S0 Required setting for 140 NOA 61100.
Output begins after bus initialization completion.*

OFF ON
S3
S2
S1 DEA control word inactive
S0 Required setting for 140 NOA 61110 and other
Output begins immediately after startup.

* Delivery status

Disconnection Behavior (S2, S3)

The following figure shows the disconnection behavior switches and settings. OFF ON

S3 Master defaults are
S2 in effect (no defaults
S1 selected: All outputs
S0 are cutoff)*
OFF ON

S3 Reserved for service specialists S2 (Test bay setting)
S1
S0

* As shipped, required setting for operation with a 140 NOA 61100.

Note: S0 and S1 settings are meaningless.

```
Subrack Mounting Slot
The module is installed in DTA 200 primary subrack slot 1-1/1-2.
When installing the module, be sure to adhere to the installation steps that are included in the accompanying documentation: Inter-Bus--S Quantum 140 NOA 611 00 User Manual (P/N 840 USE 419 00).
```

Compatible A120 I/O Modules

The following table lists the A120 I/O modules that are compatible with the DEA 202 module.

Module Type	Module Number
Discrete Input, 8 point	DEP 208, DEP 209, DEP 210 and DEP 211
Discrete Input, 16 point	DEP 214, DEP 215, DEP 216, DEP 217, DEP 218, DEP 220, DEP 254, DEP 256, DEP 257, DEP 296, DEP 297 and DEO 216,
Discrete Output, 4/8 point	DAP 204, DAP 208, DAP 209, DAP 258 and DAP 210
Discrete Output, 16 point	DAP 216, DAP 217, DAP 218 and DAO 216
Discrete Input/Output	DAP 212, DAP 220, DAP 250, DAP 252, DAP 253 and DAP 292
Analog Output	DAU 202, DAU 208 and DAU 252
Analog Input	ADU 204, ADU 205, ADU 206, ADU 216*, ADU 210*, ADU 214* ADU 254 and ADU 256
* Although these modules are not available in Concept, they can still be used with the DEA	
202.	

Power Supply Connection

The following figure shows a sample DEA 202 power supply connection. You enter the relevant power supply information in the label inlay.

A CAUTION

Improper connection danger.

The module's integrated power supply is non-isolated. Improper connection (for example, absence of the M2 connection), can lead to module destruction.

Failure to follow this instruction can result in injury or equipment damage.
Note that the noise immunity can be improved if by-pass capacitors are installed at the power supply module U and M terminals.

InterBus-S Connection

Sub-D9 "in" plug (top)

Set up the connection according to the "Remote Bus Node Wiring" section of the InterBus-S 140 NOA 61100 User Manual (P/N 840 USE 419 00).
The following figure shows the remote bus port pin assignmentsas viewed from the solder side.

Sub-D9 "out" socket (bottom)

Pin	Signal	Function
1	DO	Transmit data (+)
2	DI	Receive data (+) 3
GND	Signal ground (5 VDC Out) cannot be used externally	
5^{*}	$\overline{\text { DO }}$	Transmit data (-)
6	$\overline{\text { DI }}$	Receive data (-)
7	RBST	Plug identifier

*) Incoming remote bus = not used

- Pin present

O No pin present

DEA 202 LEDs

LED Displays

The following table describes the LED displays, which are located on the module front plate.

No.	Label Inlay Identifier	Color	Function
18 (left)	U	Green	24 VDC supply present
19 (left)	ready 5 V	Green	Module ready for service, 5 VDC output voltage present
3 (right)	ready	Green	Coupler ready
4 (right)	BA	Green	Transfer in progress
5 (right)	RC	Green	"Remote bus check", remote bus input monitoring
6 (right)	RD	Red	"Remote bus disabled", remote bus feed- through terminated (remote bus node diagnosis)

DEA 202 Specifications

Specifications
 The following table lists specifications for the DEA 202 InterBus S Interface Module.

Assignment	
System	TSX Compact (A120, 984)
Module area	Slot 1-1/1-2 of DTA 200 primary backplane
I/O Map	
Register 3x/4x	$0 \mathrm{in} / 0$ out
Power Supply	
External input voltage	UB = 24 VDC, max. 0.85 A
Primary fusing	1.25 A medium time-lag fuse
Power on current	20 A , time constant $=1 \mathrm{~ms}$
Tolerances, limiting values	24VDC external power source, 22 ... 30VDC input, peak value $=33 \mathrm{VDC}$
Reference potential M	M2
Protective earth	PE
Secondary voltage	5.15 VDC, max. 1.6 A, non-isolated
Buffering time	Typically 5 ms for 24 VDC
Overload protection	Through current limiting
Data Interface	
Field bus	Through a potential-free RS-485 interface (serial, symmetric)
INTERBUS Protocol chip	SUPI II (INTERBUS Generation 3)
Processor	
Processor type	Intel 80C152 / 12 MHz
Data memory	32 KB RAM
Firmware	32 KB EPROM
Mechanical Design	
Module	Standard double-size module
Format	2 slots
Weight	Approx. 500 g
Connections	
Power supply	5-pole screw/plug-in terminal block
Remote bus	Sub-D9 plug and Sub-D9 socket
Back plane	2 plug connectors 1/3 C30M, 1 socket connector 1/3 R30F

Environmental Characteristics	
Regulations	VDE 0160, UL 508; CSA 22.2 No.142, European Directive on EMC 89/336/EEC, and Low Voltage Directive 79/23/ EEC Standards.
Permissible ambient temperature	$0 \ldots+60$ degrees C
Power dissipation	Typically 6 W

Overview of the DEO 216 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEO 216 Input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEO 216 Input Module?	432
Specifications of the DEO 216 Input Module	433

What is the DEO 216 Input Module?

Brief Product Description

The DEO 216 is a 24 Vdc , 16 point discrete input module.
It senses input signals received from field sensing devices such as push-button, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the controller. Signals are field wired in two groups, eight signals per group. DEO 216 inputs are not opto-isolated from the I/O bus.

LEDs
The DEO 216 module has one green LED, opposite terminal screw 1, which indicates when ON that power is available to the 16 inputs below it. The module also has 16 red LEDs, eight opposite terminal screws $3 \ldots 10$ and eight opposite terminal screws 14 ... 21; when any one of these LEDs are ON, it indicates voltage present at the corresponding input.
The following figure is a wiring diagram and simplified schematic of the DEO 216 Input module.

Specifications of the DEO 216 Input Module

Specifications

 for the DEO 216The following table shows the specifications.

DEO216 Specifications		
Module Topology	Number of Inputs	16
	Number of Groups	1
	Points/Group	16
	Isolation	Not isolated from the I/O bus
Power Supplies	External Source Requirement	$20 . .30 \mathrm{Vdc}$ for eight inputs
	Rated Signal Value	+24 Vdc
	Internally Provided Source	$5 \mathrm{~V},<15 \mathrm{~mA}$ from I/O bus
	Internal Power Dissipation	2 W (typical)
Electrical Characteristics	ON State Signal Level	+12 ... 30 Vdc
	OFF State Signal Level	-2 ... +5 Vdc
	ON State Input Current	7 mA @ 24 Vdc 8.5 mA @ 30 Vdc
	Response Time	4 ms (typical)
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/0x	$16 \mathrm{in} / 0$ out
Dimensions	W $\times H \times$ D	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \\ & \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	$220 \mathrm{~g}(.5 \mathrm{lb})$
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards	

Overview of the DEP 208 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 208 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 208 Input Module?	436
DEP 208 Input Module LEDs	436
DEP 208 Input Module Field Wiring	437
Using the DEP 208 Input Module wilth Proximity Switches	438
DEP 208 Input Module Specifications	439

What is the DEP 208 Input Module?

Brief Product The DEP 208 is a discrete input module with eight independent 230 Vac input Description circuits. It senses input signals from field sensing devices such as pushbuttons, limit or proximity switches, or other ac input sources and converts those signals into voltage signals that can be used by the PLC in a logic scan. Signals are field-wired in one group of eight inputs. Each input is opto-isolated from the I/O bus.

DEP 208 Input Module LEDs

LEDs The DEP 208 has nine LEDs. One green LED opposite terminal screw 1 indicates the presence of 5 V from the I/O bus. Eight red LEDs opposite terminal screws 3, 5, $7,9,14,16,18$, and 20 indicate that voltage is present at inputs $1 \ldots 8$, respectively.

DEP 208 Input Module Field Wiring

Introduction

Wiring Diagram and Simplified Schematic for DEP 208

The DEP 208 is a discrete input module with eight independent 230 Vac input circuits. It senses input signals from field sensing devices such as pushbuttons, limit or proximity switches, or other ac input sources and converts those signals into voltage signals that can be used by the PLC in a logic scan. Signals are field-wired in one group of eight inputs. Each input is opto-isolated from the I/O bus.

A wiring diagram and simplified schematic for the DEP 208 input module is provided below.

Using the DEP 208 Input Module wilth Proximity Switches

Introduction The leakage current of two-wire proximity switches may be as high as 3 mA . Since the OFF current rating of the DEP 208 is .5 mA per input, two-wire proximity switches may trigger false inputs in the module. If you plan to use the DEP 208 in a proximity switch application, consider the following recommendations to prevent false inputs from occurring.

Existing To eliminate the possibility of false inputs, place a 10 kOhm resistor between neutral Installations

Keep the above current ratings in mind when selecting proximity switches. Threewire proximity switches have leakage current levels below . 5 mA , and are recommended in order to avoid the need for the 10 kOhm resistor.

The following diagram illustrates wiring the DEP 208 with a 10 kOhm Resistor.

DEP 208 Input Module Specifications

Table of
Specifications for DEP 208

The following table contains a list of DEP 208 input module specifications.

Module Topology	Number of Inputs	8
	Number of Groups	1
	Points/group	8
	Isolation	Optocoupler on each input point
Power Supplies	External Source Requirement	$\begin{aligned} & 230 \mathrm{Vac} \text { (+/- } 15 \text { percent), } 47 \ldots \\ & 63 \mathrm{~Hz} \end{aligned}$
	Internally Provided Source	5 V , less than 30 mA from the I/O bus
	Internal Power Dissipation	2 W (typical)
Electrical Characteristics	Working Voltage Range	195 ... 265 Vac
	ON Current Minimum	1 mA /input
	OFF Current Maximum	$0.5 \mathrm{~mA} / \mathrm{input}$
	0 to 230 V Response Time	25 ms (typical)
	230 to 0 V Response Time	50 ms (typical)
	Operating Mode	True High
	Wire Size/Terminal	One wire: 14 AWG
		Two wires: 20 AWG
I/O Map	Discrete 1x/ox	$8 \mathrm{in} / 0$ out
Dimensions	WxHxD	$\begin{aligned} & 40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times \\ & 5.6 \times 4.5 \mathrm{in}) \end{aligned}$
	Weight	$220 \mathrm{~g}(.5 \mathrm{lb})$
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards	

Overview of the DEP 209 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 209 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 209 Input Module?	442
DEP 209 Input Module LEDs	442
DEP 209 Input Module Field Wiring	443
Using the DEP 209 Input Module with Proximity Switches	444
DEP 209 Input Module Specifications	445

What is the DEP 209 Input Module?

Brief Product The DEP 209 is a discrete input module with eight independent 120 Vac input Description circuits. It senses input signals from field sensing devices such as pushbuttons, limit or proximity switches, or other ac input sources and converts those signals into voltage signals that can be used by the controller in a logic scan. Signals are fieldwired in one group of eight inputs. Each input is opto-isolated from the I/O bus.

DEP 209 Input Module LEDs

LEDs \quad The DEP 209 has nine LEDs. One green LED opposite terminal screw 1 indicates the presence of 5 V from the I/O bus. Eight red LEDs opposite terminal screws 3, 5, $7,9,14,16,18$, and 20 indicate that voltage is present at inputs $1 \ldots 8$, respectively.

DEP 209 Input Module Field Wiring

Introduction

Wiring Diagram and Simplified Schematic for DEP 209

The DEP 209 is a discrete input module with eight independent 120 Vac input circuits. It senses input signals from field sensing devices such as pushbuttons, limit or proximity switches, or other ac input sources and converts those signals into voltage signals that can be used by the controller in a logic scan. Signals are fieldwired in one group of eight inputs. Each input is opto-isolated from the I/O bus.

A wiring diagram and simplified schematic for the DEP 209 input module is provided below.

Using the DEP 209 Input Module with Proximity Switches

Introduction The leakage current of two-wire proximity switches may be as high as 3 mA . Since

 the OFF current rating of the DEP 209 is $.5 \mathrm{~mA} / \mathrm{input}$, two-wire proximity switches may trigger false inputs in the module. If you plan to use the DEP 209 in a proximity switch application, consider the following recommendations to prevent false inputs from occurring.
Existing To eliminate the possibility of false inputs, place a 10 kOhms resistor between Installations neutral and each input terminal on the module to shunt some of the current.

New Installations
Keep the above current ratings in mind when selecting proximity switches. Threewire proximity switches have leakage current levels below .5 mA and are recommended in order to avoid the need for the 10 kOhms resistor.

The following diagram illustrates wiring the DEP 209 with a 10 kOhm resistor.

DEP 209 Input Module Specifications

Table of
Specifications

The following table contains a list of DEP 209 input module specifications.

Module Topology	Number of Inputs		8
	Number of Groups		1
	Points/group		8
	Isolation		Optocoupler on each input
Power Supplies	External Source Requirement		120 Vac (+/-15 percent)
			$47 . . .63 \mathrm{~Hz}$
	Internally Provided Source from I/O bus		5 V ; less than 30 mA
	Internal Power Dissipation		2 W typical
Electrical Characteristics	Working Voltage Range		$85 . .138 \mathrm{Vac}$
	ON Current Minimum		$1 \mathrm{~mA} /$ input
	OFF Current Maximum		$0.5 \mathrm{~mA} /$ input
	Response Time	0 to 230 V	25 ms typical
		230 to 0 V	50 ms typical
	Operating Mode		True High
	Wire Size/terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$8 \mathrm{in} / 0$ out
Dimensions	W x H x D		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards		

Overview of the DEP 210 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 210 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 210 Input Module?	448
DEP 210 Input Module LEDs	449
DEP 210 Input Module Field Wiring	450
DEP 210 Input Module Specifications	453

What is the DEP 210 Input Module?

Brief Product Description

The DEP 210 is a 115 Vac , eight-point input module with 1.8 kV isolation between inputs and the bus. The module senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 115 Vac input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in one group of eight signals. Inputs are opto-isolated from the system bus.

A WARNING

Operational Hazard

The DEP 210 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

DEP 210 Input Module LEDs

Abstract

LEDs The DEP 210 module has one green LED opposite terminal screw 1. When this LED is ON, it indicates the presence of working voltage from the PLC. The module also has eight red LEDs, opposite terminal screws $3,5,7,9,14,16,18$, and 20. When any one of these LEDs is ON, it indicates voltage present at the corresponding input. Location of the LEDs is shown in the figure below. A front view and fill-in labels of the DEP 210 is provided below.

DEP 210 Input Module Field Wiring

Introduction The DEP 210 is a 115 Vac, eight-point input module with 1.8 kV isolation between inputs and the bus. The module senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 115 Vac input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in one group of eight signals. Inputs are opto-isolated from the system bus.

Wiring Diagram for DEP 210

A sample wiring diagram for the DEP 210 input module is provided below.

Simplified
 A simplified schematic for the DEP 210 input module is provided below.
 Schematic for DEP 210

DEP 210 Input Module Specifications

Table of
Specifications for DEP 210

The following table contains a list of DEP 210 input module specifications.

Module Topology	Number of Inputs		8
	Number of Groups		1
	Points/group		8
	Isolation		Optocoupler on each input
			1.8 kV field-to-bus
Power Supplies	External Source Requirement		115 Vac
	Rated Signal Value		115 Vac
			$47 . . .65 \mathrm{~Hz}$
	Internally Provided Source from I/O bus		5 V
			35 mA maximum
	Internal Power Dissipation		3 W typical
Electrical Characteristics	ON State Signal Level		$80 . .132 \mathrm{Vac}$
	OFF State Signal Level		$0 . .35 \mathrm{Vac}$
	ON State Input Current		15.5 mA /input @ 115 Vac
			6 mA @ 80 V , 20 mA @ 132 V
	OFF State Input Current		3 mA maximum
	Response Time	ON	10 ms typical
		OFF	40 ms typical
	Operating Mode		True High
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$8 \mathrm{in} / 0$ out
Dimensions	W $\times \mathrm{H} \times \mathrm{D}$		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		250 g
			0.55 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards		

Overview of the DEP 211 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 211 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 211 Input Module?	456
DEP 211 Input Module LEDs	457
DEP 211 Input Module Field Wiring	458
DEP 211 Input Module Specifications	461

What is the DEP 211 Input Module?

Brief Product Description

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The DEP 211 is a 115 Vac, eight-point isolated input module. The module senses input signals received from field devices such as pushbuttons, limit and proximity switches, or other 115 Vac sources and converts those signals into logic voltage levels that can be used by the controller. Signals are field wired in one group of eight signals. Inputs are isolated from the system bus and from one another.

A WARNING
Operational Hazard
The DEP 211 module will only operate properly when used with an A984, E984, or
Micro 512/612 controller.
Failure to follow this instruction can result in death, serious injury, or equipment damage.

A WARNING

Operational Hazard

The DEP 211 module will only operate properly when used with an A984, E984, or Micro 512/612 controller.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

DEP 211 Input Module LEDs

Abstract

LEDs The DEP 211 module has one green LED opposite terminal screw 1. When this LED is ON , it indicates the presence of working voltage from the controller. The module also has 8 red LEDs, opposite terminal screws $3,5,7,9,14,16,18$, and 20. When any one of these LEDs is ON, it indicates voltage present at the corresponding input. Location of the LEDs is shown in the figure below.

A front view of the DEP 211 is provided below.

DEP 211 Input Module Field Wiring

Introduction The DEP 211 is a 115 Vac, eight-point isolated input module. The module senses input signals received from field devices such as pushbuttons, limit and proximity switches, or other 115 Vac sources and converts those signals into logic voltage levels that can be used by the controller. Signals are field wired in one group of eight signals. Inputs are isolated from the system bus and from one another.

Wiring Diagram for DEP 211

A sample wiring diagram for the DEP 211 input module is provided below.

Simplified
 Schematic for DEP 211

A simplified schematic for the DEP 211 input module is provided below.

DEP 211 Input Module Specifications

Table of
Specifications for DEP 211

The following table contains a list of DEP 211 input module specifications.

Module Topology	Number of Inputs		8
	Number of Groups		8
	Points/group		1
	Isolation		Optocoupler on each input
			1.8 kV between inputs
Power Supplies	External Source Requirement		None
	Rated Signal Value		$115 \mathrm{Vac}, 47$... 65 Hz
	Internally Provided Source from I/O bus		5 V
			35 mA maximum
	Internal Power Dissipation		3 W typical
Electrical Characteristics	ON State Signal Level		80 ... 132 Vac
	OFF State Signal Level		0 ... 35 Vac
	ON State Input Current		15.5 mA/input @ 115 Vac
			$\begin{aligned} & 6 \mathrm{~mA} @ 80 \mathrm{~V} ; 20 \mathrm{~mA} @ \\ & 132 \mathrm{~V} \end{aligned}$
	OFF State Input Current		3 mA maximum
	Response Time	ON	10 ms typical
		OFF	40 ms typical
	Operating Mode		True High
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		8 in/0 out
Dimensions	W xHxD		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		250 g
			0.55 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 214/254 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 214/254 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 214/254 Input Module?	464
DEP 214/254 Input Module LEDs	465
DEP 214/254 Input Module Field Wiring	466
DEP 214/254 Input Module Specifications	468

What is the DEP 214/254 Input Module?

Brief Product Description

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The DEP 214/254 is a $12 \ldots 60$ Vdc 16-point discrete input module. It senses levels provided by field devices such as pushbuttons, limit and proximity switches, or other dc input sources, and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are optically isolated from the system bus. The DEP 254 functions just like the DEP 214 except that the DEP 254 operates at extended temperature.

Note: DEP 254 model is available with conformal coating. The conformal coating model is DEP 254C and it meets Railway standard EN 50155.

DEP 214/254 Input Module LEDs

LEDs
 The DEP 214/254 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and peripheral connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided.

A front view with DEP 214 label is provided below.

	DEP 214
U - - -	
U	
1	
2	
3	
4	
5	
6	
7	
8	
M	
U	
U- - -	
9	
10	
11	
12	
13	
14	
15	
16	
M	
card	rd

DEP 214/254 Input Module Field Wiring

Introduction

Wiring Diagram for DEP 214/254

The DEP $214 / 254$ is a 12 ... 60 Vdc 16 -point discrete input module. It senses levels provided by field devices such as pushbuttons, limit and proximity switches, or other dc input sources, and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are optically isolated from the system bus. The DEP 254 functions just like the DEP 214 except that the DEP 254 operates at extended temperature.

A sample wiring diagram for the DEP 214/254 input module is provided below.

DEP 214	
U	-
U	-
1	3
2	4
3	5
4	6
5	7
6	8
7	10
8	10
M	11
U	-13
U	13
9	14
10	15
11	16
12	17
13	18
14	19
15	20
16	21
M	22
card	

Simplified Schematic for DEP 214/254

A simplified schematic for the DEP 214/254 input module is provided below.

DEP 214/254 Input Module Specifications

Table of Specifications for DEP 214/254

The following table contains DEP 214/254 input specifications.

Module Topology	Number of Inputs	16
	Number of Groups	2
	Points/group	8
	Isolation	Optocoupler on each input
Required Loadable	SW-IODR-001	$12 \ldots 60 \mathrm{Vdc}$ for eight inputs
Power Supplies	External Source Requirement	$5 \mathrm{~V} ; 22 \mathrm{~mA}$ maximum
	Internally Provided Source from I/O bus	

The following table lists DEP 214/254 switching levels.

Signal Input	12 V	24 V	48 V	60 V
Signal Level OFF	$-0.6 \ldots+1.8 \mathrm{~V}$	$-3 \ldots+5 \mathrm{~V}$	$-6 \ldots+10 \mathrm{~V}$	$-3 \ldots+9 \mathrm{~V}$
Signal Level ON	$+9 \ldots+15 \mathrm{~V}$	$+11 \ldots+30 \mathrm{~V}$	$+33 \ldots+60 \mathrm{~V}$	$+45 \ldots+75 \mathrm{~V}$
Current OFF	$-0.6 \ldots+1 \mathrm{~mA}$	$-1.7 \ldots+2.9 \mathrm{~mA}$	$-3.4 \ldots+2.5 \mathrm{~mA}$	$-1.7 \ldots+2.5 \mathrm{~mA}$
Current ON	$+5.1 \ldots+7.1 \mathrm{~mA}$	$+6.0 \ldots+7.1 \mathrm{~mA}$	$+2.0 \ldots+2.5 \mathrm{~mA}$	$+2.0 \ldots+2.5 \mathrm{~mA}$
Reference Current	less than or equal to 20 mA	less than or equal to 10 mA	less than or equal to 7 mA	less than or equal to 7 mA

DEP 214/254 Specifications (continued)

	ON State Input Current		7 mA @ 24 Vdc
			8.5 mA @ 30 Vdc
	Response Time		4 ms typical
	Operating Mode		True High
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
Temperature	Ambient Operating		0 ... 60 degrees C for DEP214 $-40 \ldots+70$ degrees C for DEP254
I/O Map	Discrete 1x/0x		16 in/0 out
Dimensions	W x H x D		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		260 g
			0.57 lb
Agency Approvals	DEP214: VDE 0160; UL 508; and CSA 22.2 No. 142 Standards.		
	DEP254C: Railway EN 50 155; EMC 89/336/EEC Standards. UL 508; CSA 22.2 No.142; FM Class I, Div 2 pending		

Overview of the DEP 215 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 215 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 215 Input Module?	472
DEP 215 Input Module LEDs	472
DEP 215 Input Module Field Wiring	473
Unique True Low Characteristics of the DEP 215 Input Module	475
DEP 215 Input Module Specifications	477

What is the DEP 215 Input Module?

Brief Product Description

Note: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The DEP 215 is a TTL, 16-point discrete input module. It senses levels provided by field devices such as pushbuttons, limit and proximity switches, or other TTL input sources, and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are optoisolated from the system bus.

DEP 215 Input Module LEDs

LEDs The DEP 215 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the group directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws 14 ... 21; when any one of these LEDs are ON , it indicates a $-1 \ldots+2 \mathrm{Vdc}$ level present at the corresponding input.

DEP 215 Input Module Field Wiring

Introduction

Wiring Diagram for DEP 215

The DEP 215 is a TTL, 16-point discrete input module. It senses levels provided by field devices such as pushbuttons, limit and proximity switches, or other TTL input sources, and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are optoisolated from the system bus.

A sample wiring diagram for the DEP 215 input module is provided below.

Simplified
 Schematic for DEP 215

A simplified schematic for the DEP 215 input module is provided below.

Unique True Low Characteristics of the DEP 215 Input Module

Introduction This section is intended for DEP 215 16-point TTL input module users who have installed or are otherwise familiar with 200, 500 or 800 Series I/O TTL input modules.

True Low Module These users should be aware that:

Step	Action
1	The DEP 215 is a True Low module; therefore: - a HIGH (4 $\ldots 5.5 \mathrm{Vdc})$ input level to the DEP 215 is read as a logic zero (0) by the system PLC - a low $(-1 \ldots+2$ Vdc) level is read as a logic 1
2	Conversely, other I/O family TTL input modules are traditionally True High; therefore: - +5 Vdc input levels to other I/O family TTL input modules are read as logic 1 - low or ground input levels are read as logic 0

A CAUTION

Operational Hazard

Traffic Copping the DEP 215 as BCD and using input devices associated with other series traditional True High modules will cause the controller's BCD conversion to produce unexpected results.

Failure to follow this instruction can result in injury or equipment damage.
For example, refer to the module input layout in the following illustration.

If the DEP 215 were substituted for an older series TTL input module in a system and I/O Mapped as BCD, the four bottom inputs would be interpreted as an invalid decimal 12 by the PLC. Since this interpretation is a number greater than 9 , the internal conversion result would be zero. A conventional module's conversion value would be decimal 3 . In this case, inverting all of the field device inputs to the DEP 215 or changing to a device with complementary outputs results in usable data.

DEP 215 Input Module Specifications

Table of Specifications for DEP 215

The following table contains DEP 215 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Required Loadable	SW-IODR-001 (See Requirements for CE Compliance, p. 857)		
Power Supplies	External Source Requirement		5 Vdc for eight inputs
	Rated Signal Value		Sinking device
	Internally Provided Source from I/ O bus		5 V ; 25 mA maximum
	Internal Power Dissipation		2 W typical
Electrical Characteristics	False Condition Signal Level		$4 \ldots 5 \mathrm{Vdc}$
	True Condition Signal Level		-1 ... +2 Vdc
	True Condition Input Current		3.5 mA @ 0 Vdc
	Response Time		1 ms typical
	Operating Mode		True Low
	Wire Size/terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		16 in/0 out
Dimensions	W x H x D		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb .
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 216/256 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 216/256 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 216/256 Input Module?	480
DEP 216/256 Input Module LEDs	480
DEP 216/256 Input Module Field Wiring	481
DEP 216/256 Input Module Specifications	482

What is the DEP 216/256 Input Module?

Abstract

Brief Product Description

The DEP 216/256 is a 24 Vdc , 16-point discrete input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opto-isolated from the system bus. The DEP 256 functions just like the DEP 216 except that the DEP 256 operates at extended temperature.

Note: The DEP 256 model is available with conformal coating. The conformal coating model is DEP 256C and it meets Railway standard EN 50155.

DEP 216/256 Input Module LEDs

LEDs The DEP 216/256 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the eight inputs directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws $14 \ldots 21$; when any one of these LEDs are ON, it indicates voltage present at the corresponding input.

DEP 216/256 Input Module Field Wiring

Introduction

The DEP 216/256 is a 24 Vdc , 16 -point discrete input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opto-isolated from the system bus. The DEP 256 functions just like the DEP 216 except that the DEP 256 operates at extended temperature.

Simplified Schematic for DEP 216/256

A simplified schematic for the DEP 216/256 input module is provided below.

DEP 216/256 Input Module Specifications

Table of Specifications for DEP 216/256

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Power Supplies	External Source Requirement		24 Vdc for eight inputs
	Rated Signal Value		$24 \mathrm{Vdc}+25$ percent/-15 percent
	Internally Provided Source from I/O bus		5 V ; 15 mA
	Internal Power Dissipation		2 W typical
Electrical Characteristics	ON State Signal Level		$12 . . .30 \mathrm{Vdc}$
	OFF State Signal Level		$-2 . . .+5 \mathrm{Vdc}$
	ON State Input Current		7 mA @ 24 Vdc
			8.5 mA @ 30 Vdc
	Response Time		4 ms typical
	Operating Mode		True High
	Wire Size/terminal	One wire	14 AWG
		Two wires	20 AWG
Environmental Characteristics	Operating Temperature		$0 \ldots 60$ degrees C for DEP216 $-40 \ldots+70$ degrees C for DEP256
I/O Map	Discrete 1x/0x		16 in/0 out
Dimensions	W $\times \mathrm{H} \times \mathrm{D}$		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	DEP216: VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards.		
	DEP256C: Railway standard EN 50 155; European Directive EMC 89/336/EEC. UL 508; CSA 22.2 No.142; and FM Class I, Div 2 pending.		

Overview of the DEP 217 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 217 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 217 Input Module?	484
DEP 217 Input Module LEDs	484
DEP 217 Input Module Field Wiring	485
DEP 217 Input Module Specifications	486

What is the DEP 217 Input Module?

Brief Product

 DescriptionNote: Some A120 I/O modules (DEP 211/214/215/217, DAP211/217, ADU204/ 211/214/216, DAU204, VIC2xx, and MOT20x) require a loadable (SW-IODR-001) for proper operation when using certain PLCs (A984-1xx, E984-24x/251/255) with Modsoft.

The DEP 217 is a 24 Vdc , 16-point discrete true low input module. It senses levels provided by field devices such as pushbuttons, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are opto-isolated from the system bus.

Note: The DEP 217 is a true low module; therefore, a high (greater than or equal to external source minus 6 Vdc) is read by the PLC as a logic 0 . Conversely, a low (less than or equal to external source minus 12 Vdc) is read by the PLC as a logic 1.

DEP 217 Input Module LEDs

LEDs \quad The DEP 217 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the group directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws $14 \ldots 21$; when any one of these LEDs are ON , it indicates 3 external source minus 12 V at the corresponding input.

DEP 217 Input Module Field Wiring

Introduction

Wiring Diagram and Simplified Schematic for DEP 217

DEP 217 Input Module Specifications

Table of Specifications for DEP 217

The following table contains DEP 217 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Required Loadable	SW-IODR-001 (See Requirements for CE Compliance, p. 857)		
Power Supplies	External Source Requirement		24 Vdc for eight inputs
	Rated Signal Value		Sinking device
	Internally Provided Source from I/O bus		5 V ; 25 mA
	Internal Power Dissipation		3 W typical
Electrical Characteristics	False Condition Signal Level		greater than or equal to external source minus 6 Vdc
	True Condition Signal Level		less than or equal to external source minus 12 Vdc
	True Condition Input Current		7 mA @ 0 Vdc
	Response Time		4 ms typical
	Operating Mode		True Low
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		16 in/0 out
Dimensions	W xHxD		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb .
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 218 Input Module

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 218 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 218 Input Module?	488
DEP 218 Input Module LEDs	489
DEP 218 Input Module Field Wiring	491
DEP 218 Input Module Specifications	493

What is the DEP 218 Input Module?

Brief Product Description

A WARNING
Operational Hazard
The DEP 218 module will only operate properly when used with an A984, E984, or
Micro 512/612 controller.
Failure to follow this instruction can result in death, serious injury, or
equipment damage.

The DEP 218 is a 115 Vac , 16 -point input module with 1.8 kV isolation between field devices and the bus. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 115 Vac input sources and converts those signals into logic voltage levels that can be used by the controller. Signals are field wired in two groups, eight signals/group. Inputs are optoisolated from the system bus.

Note: The DEP 218 is designed for capacitive loads. Without any discharge bypass resistor. When using field devices with resistive loads you should use 120K 1/4 Watt resistors (approximately) across the input terminals of the DEP 218. This allows accurate switching of phase firing type solid state sensors by ensuring that the capacitor discharges within the sensor required 50 milliseconds. If your application permits, a DEP 210 may be substituted for the DEP 218. The DEP 210 has an internal input discharge circuit.

DEP 218 Input Module LEDs

Abstract

LEDs The DEP 218 module has one green LED opposite terminal screw 1. When this LED is ON, it indicates the presence of working voltage from the power supply. The module also has 16 red LEDs, eight opposite terminal screws $3 \ldots 10$ and eight opposite terminal screws $14 \ldots 21$; when any one of these LEDs is ON, it indicates voltage present at the corresponding input.

A front view and fill-in labels of the DEP 218 module is provided below.

DEP 218	
ready	N
N	
1	
2	
3	
4	
5	
6	
7	
8	
N	
N	
9	
10	
11	
12	
13	
14	
15	
16	
card	

DEP 218 Input Module Field Wiring

Wiring Diagram for DEP 218

A sample wiring diagram for the DEP 218 input module is provided below.

Simplified
 A simplified schematic for the DEP 218 input module is provided below.
 Schematic for DEP 218

DEP 218 Input Module Specifications

Table of
Specifications for DEP 218

The following table contains DEP 218 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input point, 1.8 kV field-to-bus
Power Supplies	External Source Requirement		115 Vac
	Rated Signal Value		115 Vac
			$47 \ldots 65 \mathrm{~Hz}$
	Internally Provided Source from the I/O bus		5 V , less tghan 50 mA
	Internal Power Dissipation		3 W typical
Electrical Characteristics	ON State Signal Level		$80 . .132 \mathrm{Vac}$
	OFF State Signal Level		$0 . .35 \mathrm{Vac}$
	ON State Input Current		15.5 mA/input @ 115 Vac
			6 mA @ $80 \mathrm{~V}, 20 \mathrm{~mA}$ @ 132 V
	OFF State Input Current		3 mA maximum
	Response Time	ON	10 ms typical
		OFF	40 ms typical
	Operating Mode		True High
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$16 \mathrm{in} / 0$ out
Dimensions	W xHxD		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		300 g
			0.66 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 220 Input Module

40

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 220 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 220 Input Module?	496
DEP 220 Input Module LEDs	496
DEP 220 Input Module Field Wiring	497
DEP 220 Input Module Specifications	499

What is the DEP 220 Input Module?

Brief Product Description

The DEP 220 is a $24 \mathrm{Vdc}+25$ percent/-15 percent, 16-point discrete input module similar to the DEP 216 module, with a much faster response time (0.5 ms). It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opt-isolated from the system bus.

A CAUTION

Operational Hazard

Modicon recommends using two separate power sources with the DEP 220-one for outputs and one for inputs-in order to avoid electrical switching noise.
Failure to follow this instruction can result in injury or equipment damage.

Note: Inputs do not work if output supply is disconnected.

DEP 220 Input Module LEDs

LEDs
The DEP 220 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power available to the eight inputs directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws 14 ... 21 ; when any one of these LEDs are ON, it indicates voltage present at the corresponding input.

DEP 220 Input Module Field Wiring

Introduction The DEP 220 is a $24 \mathrm{Vdc}+25$ percent/-15 percent, 16 -point discrete input module similar to the DEP 216 module, with a much faster response time (0.5 ms). It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 24 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opto-isolated from the system bus.

\triangle CAUTION

Operational Hazard

Modicon recommends using two separate power sources with the DEP 220-one for outputs and one for inputs-in order to avoid electrical switching noise.
Failure to follow this instruction can result in injury or equipment damage.

Note: Inputs do not work if output supply is disconnected.

Wiring Diagram and Simplified Schematic

A sample wiring diagram and simplified schematic for the DEP 220 input module is provided below.

DEP 220 Input Module Specifications

Table of Specifications

The following table contains DEP 220 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Power Supplies	External Source Requirement		$20 . .30 \mathrm{Vdc}$ for eight inputs
	Rated Signal Value		+24 Vdc
	Internally Provided Source from the I/O bus		5 V ; less than 25 mA
	Internal Power Dissipation		2 W typical
Electrical Characteristics	ON State Signal Level		$12 . .30 \mathrm{Vdc}$
	OFF State Signal Level		-2 ... +5 Vdc
	ON State Input Current		7 mA @ 24 Vdc
			8.5 mA @ 30 Vdc
	Response Time		0.5 ms typical
	Operating Mode		True High
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$16 \mathrm{in} / 0$ out
Dimensions	W x $\mathrm{H}^{\text {c }}$		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 257 Input Module

41

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 257 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 257 Input Module?	502
DEP 257 Input Module LEDs	503
DEP 257 Input Module Field Wiring	505
DEP 257 Input Module Specifications	507

What is the DEP 257 Input Module?

Brief Product Description
 The DEP 257 is an extended temperature($-40 \ldots+705 \mathrm{C}$), $110 \mathrm{Vdc} 40 \%$, 16-point discrete input module. The full operational range of this module is $66 \ldots 154 \mathrm{Vdc}$. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other dc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opto-isolated from the system bus.

Note: The DEP 257 model is available with conformal coating. The conformal coating model is DEP 257C.

DEP 257 Input Module LEDs

LEDs \quad The DEP 257 module has two amber LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the eight inputs directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws $14 \ldots 21$; when any one of these LEDs are ON , it indicates voltage present at the corresponding input.

\triangle CAUTION

Operational Hazard

Use of SIM 011 with DEP 257 is not allowed.
Failure to follow this instruction can result in injury or equipment damage.

Note: To I/O Map the DEP 257 module in Modsoft you must select DEP 216. Both modules share a host driver and have similar characteristics.

A front view with DEP 257 label is provided below.

DEP 257 Input Module Field Wiring

Introduction The DEP 257 is an extended temperature($-40 \ldots+70$ degrees C), $110 \mathrm{Vdc}+/-40$ percent, 16-point discrete input module. The full operational range of this module is 66 ... 154 Vdc . It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other dc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals per group. Inputs are opto-isolated from the system bus.

Note: The DEP 257 model is available with conformal coating. The conformal coating model is DEP 257C.

Wiring Diagram and Simplified Schematic

A wiring diagram and simplified schematic for the DEP 257 input module is provided below.
0.16 A

DEP 257 Input Module Specifications

Table of Specifications

The following table contains DEP 257 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Power Supplies	External Source Requirement		$110 \mathrm{Vdc}+/-40$ percent for each group of eight inputs
	External Power		40 mA all points on
	Rated Signal Value		$66 . .154 \mathrm{Vdc}$
	Internally Provided Source from I/O bus		5 Vdc @ 25 mA
	Internal Power Dissipation		3 W typical
Electrical Characteristics	ON State Signal Level		$55 . .170 \mathrm{Vdc}$
	OFF State Signal Level		$-2 \ldots+10 \mathrm{Vdc}$
	ON State Input Current		2.2 mA @ 110 Vdc
	Response Time		6 ms typical
	Sensor Supply		$110 \mathrm{Vdc}+/-40$ percent for each group of 8 inputs each residual ripple max 20 percent
	Wire Size/ terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$16 \mathrm{in} / 0$ out
Environmental	Extended Operating Temperature Range		-40 ... +70 degrees C
Dimensions	W x HxD		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	DEP257: UL 508; cUL; CSA 22.2 No. 142; and European Directive EMC 89/336/EEC Standards		
	DEP257C: Railway standard EN 50 155; UL 508; cUL; CSA 22.2 No. 142; and European Directive EMC 89/336/EEC Standards		

Overview of the DEP 296 Input Module

42

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 296 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 296 Input Module?	510
DEP 296 Input Module LEDs	511
DEP 296 Input Module Field Wiring	513
DEP 296 Input Module Specifications	516

What is the DEP 296 Input Module?

Brief Product Description

The DEP 296 is a 60 Vdc , 16-point isolated input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 60 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are opto-isolated from the system bus.

DEP 296 Input Module LEDs

Abstract

LEDs The DEP 296 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the eight inputs directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws $14 \ldots 21$; when any one of these LEDs are ON, it indicates voltage present at the corresponding input.

A front view with DEP 296 label is provided below.

DEP 296	
U	1
U	2
1	3
2	4
3	5
4	
5	7
6	8
7	9
8	10
M	11
U	12
U	13
9	14
10	15
11	16
12	17
13	18
14	19
15	20
16	21
M	22

DEP 296 Input Module Field Wiring

Introduction The DEP 296 is a 60 Vdc , 16-point isolated input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 60 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are opto-isolated from the system bus.

Wiring Diagram

A wiring diagram for the DEP 296 input module is provided below.

Simplified A simplified schematic for the DEP 296 input module is provided below. Schematic

DEP 296 Input Module Specifications

Table of Specifications

The following table contains DEP 296 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each in put
Power Supplies	External Source Requirement		60 Vdc
			125 mA
	Internally Provided Source from I/ O bus		5 V
			25 mA maximum
	Internal Power Dissipation		4 W typical
Input Characteristics	Rated Signal Value		+60 Vdc
	ON State Signal Level		$35 . .70 \mathrm{Vdc}$
	OFF State Signal Level		$-4 \ldots+13 \mathrm{Vdc}$
	ON State Input Current		7 mA @ 60 Vdc
	Response Time		4 ms typical
	Operating Mode		True High
	Wire Size/terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$16 \mathrm{in} / 0$ out
Dimensions	W x H x D		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No. 142 Standards		

Overview of the DEP 297 Input Module

43

At a Glance

Purpose \quad The purpose of this chapter is to describe the DEP 297 input module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the DEP 297 Input Module?	518
DEP 297 Input Module LEDs	519
DEP 297 Input Module Field Wiring	521
DEP297 Input Module Specifications	524

What is the DEP 297 Input Module?

Brief Product Description

The DEP 297 is a 48 Vdc , 16-point isolated input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 48 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are opto-isolated from the system bus.

Note: To I/O Map the DEP 297 module in Modsoft you must select DEP 216. Both modules share a host driver and have similar characteristics.

DEP 297 Input Module LEDs

Abstract

LEDs The DEP 297 module has two green LEDs, opposite terminal screws 1 and 12. When one of these LEDs is ON, it indicates that power is available to the eight inputs directly below it. The module also has 16 red LEDs, eight opposite terminal screws 3 ... 10 and eight opposite terminal screws $14 \ldots 21$. When any one of these LEDs is ON , it indicates voltage present at the corresponding input.

A front view with DEP 297 label is provided below.

DEP 297	
U	1
U	2
1	3
2	4
3	- 5
4	4.6
5	$\checkmark=7$
6	8
7	9
8	10
M	11
U	12
U	13
9	14
10	15
11	16
12	17
13	? 18
14	드 19
15	20
16	21
M	22
card	

DEP 297 Input Module Field Wiring

Introduction The DEP 297 is a 48 Vdc , 16-point isolated input module. It senses input signals received from field sensing devices such as pushbuttons, limit and proximity switches, or other 48 Vdc input sources and converts those signals into logic voltage levels that can be used by the PLC. Signals are field wired in two groups, eight signals/group. Inputs are opto-isolated from the system bus.

Note: To I/O Map the DEP 297 module in Modsoft you must select DEP 216. Both modules share a host driver and have similar characteristics.

Wiring Diagram

A wiring diagram for the DEP 297 input module is provided below.

Simplified A simplified schematic for the DEP 297 input module is provided below.
Schematic

DEP297 Input Module Specifications

Table of Specifications

The following table contains DEP 297 input module specifications.

Module Topology	Number of Inputs		16
	Number of Groups		2
	Points/group		8
	Isolation		Optocoupler on each input
Power Supplies	External Source Requirement		48 Vdc
			125 mA
	Internally Provided Source from I/O bus		5 V
			25 mA maximum
	Internal Power Dissipation		3 W typical
Input Characteristics	Rated Signal Value		+48 Vdc
	ON State Signal Level		$29 . . .56 \mathrm{Vdc}$
	OFF State Signal Level		$-3 \ldots+10 \mathrm{Vdc}$
	ON State Input Current		7 mA @ 48 Vdc
	Response Time		4 ms typical
	Operating Mode		True High
	Wire Size/terminal	One wire	14 AWG
		Two wires	20 AWG
I/O Map	Discrete 1x/0x		$16 \mathrm{in} / 0$ out
Dimensions	W x H \times D		$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	Weight		220 g
			0.5 lb
Agency Approvals	VDE 0160; UL 508; and CSA 22.2 No.142 Standards		

Overview of the FRQ 204/254 Frequency Module

44

At a Glance

Purpose \quad The purpose of this chapter is to describe the FRQ 204/254 Frequency Module.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
What is the FRQ 204/254 Frequency Module?	526
Physical Characteristics of the FRQ 204/254 Frequency Module	527
Operating Modes of the FRQ 204/254 Frequency Module	528
Configuration of the FRQ 204/254 Frequency Module	529
Operation and LED Displays of the FRQ 204/254 Frequency Module	533
Specifications of the FRQ 204/254 Frequency Module	534

What is the FRQ 204/254 Frequency Module?

Brief Product Description

The FRQ-204/254 serves the purpose of frequency and speed measurement for the Compact PLCs and has the following features:

- 4Frequency inputs for counting pulse voltages 5 VDC (TTL) or 24 VDC, Counting frequency up to 1 kHz (1 x up to 50 kHz)
- 4fixed assigned semiconductor outputs 24 VDC, 0.5 A for Limit monitoring with:
- Short-circuit and overload protection
- Switch-off with value saving
- Group indication of the overload/ short-circuit switch-off
- Group short-circuit signal
- Hardware reset for the acknowledgment of the overload
- 4process inputs 24 VDC for free use
- several LED indicators for function tracking and monitoring

Note: The FRQ 254 functions just like the FRQ 204 except that the FRQ 254 operates at extended temperature.

The FRQ-204/254 can be inserted on any I/O slot in the subracks AS-HDTA-200, AS-HDTA-201 and AS-HDTA-202.

The power supply is obtained:

- Internally with 5 VDC via the I/O bus
- Externally with 24 VDC for 24 V counter inputs, outputs and enable inputs
- If required, an addition externally with 5 VDC with 5 V input pulses.

Physical Characteristics of the FRQ 204/254 Frequency Module

Illustration

The module a has bus connection on the rear and peripheral connection via screw/ plug-in terminals on the front. One of the enclosed fill-in labels is inserted in the detachable cover of the subrack near the viewing field for the LED indicators. System relevant data should be entered in the provided fields (e.g. signal names).

Operating Modes of the FRQ 204/254 Frequency Module

FRQ 204/254 The module comprises 4 independent hardware counters for the following operating Operating Modes modes:

- Frequency measurement <20 Hz, <1 kHz, <50 kHz
- Speed measurement <1 $200 \mathrm{rev} / \mathrm{min} .$, <60 $000 \mathrm{rev} / \mathrm{min} .,<65520 \mathrm{rev} / \mathrm{min}$.

The above mentioned operating modes and the required parameters should be defined in the parameters dialog screen of the panel software.
This module is a I/O bus node with isolation to the process peripherals.
In case of overload or short-circuit the corresponding output is switched off. The yellow LED indicates the overload. The reset button provides the acknowledgement. The outputs can be operated only when 24 V supply is available. When the module is inserted with voltage supply on (24 V and 5 V supply), all the outputs take 0 V position. The 4 discrete inputs (Input $1 . .4$ with LEDs) are available as free process inputs for your use. There is no functional assignment to the counter.

FRQ 204/254 Block Diagram

The following diagram describes the architecture of the FRQ 204/205 frequency module.

Configuration of the FRQ 204/254 Frequency Module

I/O Mapping

This modules uses $53 x$ input registers as detailed here.

Bits 12 ... 15 are not used

Note: Bits $4 \ldots 7$ are high when the value is $>=$ the upper limit. Bits $0 \ldots 3$ are high when the value is $<=$ the lower limit.

The $3 x$ register is shown below.
$3 x$-register 2 (frequency/revolution data)
MSB

...
...
...
$3 x$-register 5 (frequency/revolution data)
MSB

I/O Node Number Select the I/O slot number via the I/O map configuration and set the addressing of the $3 x$ registers to be used.

Wiring

 $2 \times 0.5 \mathrm{~mm} 2$ (P / N E-Nr. 424234 035). All counter inputs can be combined together in one common shielded cable, e.g. LiYrdf(Cgv)Y $5 \times 2 \times 0.5 \mathrm{~mm} 2(\mathrm{P} / \mathrm{N}$ E-No. 424238 059)- The maximum cable length is 100 m
- The shield should be connected on one side with a short cable ($<20 \mathrm{~cm}$) to earth ground. The cable shield should be grounded on both sides when higher noise levels are present.
- The cable should not be combined together with supply lines or similar sources of electrical interference. Distance $>0.5 \mathrm{~m}$.

Connection and Signal Address Assignment

The figure below illustrates a connection example for counter input F 1 with 5 V input pulses (left) for systems with higher noise level (right).

Note: The example shows a 5 V pulse generator that requires a supply voltage of 24 VDC. Supply it from terminal 1.

The following figure illustrates a connection example for counter input F1 with 24 V input pulses.

Note: The counter input F1 (TTL) is for the connection of 5 V sensor (max. 50 kHz).

Operation and LED Displays of the FRQ 204/254 Frequency Module

Operation and The module comes with the following LED indicators:
LEDs

Color and Name	Use	LED on	LED off
$1 \times$ green "U"	supply LED for 24 V counter inputs, outputs and process inputs:	supply is available	supply is not available
$1 \times$ green "ready"	LED for function	Firmware initialization is completed, PAB interface enabled (backplane communication)	Module is not ready for operation
$1 \times$ yellow "(reset)"	LED for overload or short-circuit of the outputs	short-circuit or overload on one or more outputs	faultless operation
$4 \times$ red "output $1 \ldots$ $4 "$	LEDs for outputs	outputs have "1" signal	outputs have "0" signal
$4 \times$ red "input $1 \ldots 4$ ".	LEDs for free process inputs	signal on input	signal on input

The red LED indicators show the level of voltage of input or output signal (1 or 0).
Thus, the red LED goes on when the voltage level is high (1).
Reset button:

- switches off the stored overload indication
- removes the reclosing lockout of the switched off (overloaded) outputs, when the overload is no longer present
- switches the group short circuit signal again to 0 .

Specifications of the FRQ 204/254 Frequency Module

FRQ 204/254 The following table describes the power supply.
Power Supply

External Power Supply For:	24 Vdc, ca. 1.1 A	Counter Inputs
		Process Inputs
		Outputs
	$5 \mathrm{Vdc}, 20 \mathrm{~mA}$	Counter Inputs
Internal Power Source via I/O bus	Maximum	$5 \mathrm{~V}, 100 \mathrm{~mA}$
	Typical	75 mA
	Typical	1.3 W

FRQ 204/254 I/O The following table describes the I/O map.

Map

Register $3 \mathrm{x} / 4 \mathrm{x}$	5 in / 0 out

FRQ 204/254

Frequency

 InputsThe following table describes the frequency inputs.

Quantity		4 for input pulses with 5 Vdc (TTL) or 24 Vdc
Type of Networking		potential free (optical coupler) against I/O bus
Signal Level at 5 V (TTL)	ON signal	> $=2.3 \mathrm{~V}$
	OFF signal	0... 1 V
	Input Current	<= 2.5 mA each at 0 V (current sink)
Signal Level at 24 V (TTL)	ON Signal	$12 \ldots 30 \mathrm{~V}$
	OFF signal	$-2 \ldots+5 \mathrm{~V}$
	Input Current	<= 6 mA each at 30 V (current source)
Signal Level at 24 V (TTL)	ON signal	$12 \ldots 30 \mathrm{~V}$
	OFF signal	-2 ... +5 V
Input Current (current source)		$<6 \mathrm{~mA}$ each at 30 V
Minimum Pulse Width		0.35 ms
Pulse Duty Factor		7:13 ... 1:1 .. 13:7, (13:7 = 65\% : 35\%)
Counting range		$0 \ldots 32,767$
Counting Frequency		1 kHz maximum (Input 1 with 5 V pulses 50 kHz maximum)
Accuracy (Time = 5) at:		
5 Hz	0.5\%	
20 Hz	2\%	rating mode < 20 Hz
25 Hz	4\%	
100 Hz	1\%	Operating mode $<1 \mathrm{~Hz}$
1 kHz	0.1\%	
$5 \ldots 50 \mathrm{kHz}$	0.05\%	Operating mode < 50 kHz
Accuracy (Time = 1)		ca. 10 times lower (use only for fast approximate measurements)

The following table describes the process inputs.

Quantity	
Type of Networking	
4	
Rated Signal Value	potential free (optical coupler) against I/O bus
Signal Level	HIGH Signal
	LOW signal
Input Current	$12 \ldots 30 \mathrm{~V}$
Input Delay	$-2 \ldots+5 \mathrm{~V}$

FRQ 204/254
Semiconductor Outputs

FRQ 204/254
Physical Characteristics

The following table describes the semiconductor outputs.

Quantity	4
Technique	with short-circuit and overload protection, Switch-off with value saving Group indication of the overload/short-circuit switch-off Group short-circuit signal via I/O map status word, Hardware reset for the overload acknowledgement
Type of Networking	potential free (optical coupler) against I/O bus
Consumer Connection	Between output and reference potential M1
Working Voltage U	$\mathrm{U}_{\mathrm{S}}=24 \mathrm{Vdc}$
Signal Logic	Positive Logic
Signal Output Level	1 signal $U=U_{S}-0 \ldots 2 \mathrm{~V}$
	0 signal $0 \ldots+2 \mathrm{~V}$, < 1 mA
Load Current/Output	500 mA maximum (Current source)
Starting Current for Incandescent Lamp	lein $=10 \times \mathrm{IN}$, max. 5 W
Load Current for All Outputs	1 A maximum (due to 50% simultaneity factor)
Operating Delay	< 1 ms
Circuit with Inductive Loads	Clamping diode (suppressor diode) locally (parallel to the operating coil), absolutely necessary when contact elements are present in the output lines or the lines to the peripherals are very long.
Switching Cycles	1000 / h (0.28 / s) with inductive load and max. permissible current per output 100 / s with ohmic load $8 / \mathrm{s}$ with 1.2 W lamp load

The following table describes the physical characteristics.

Module	Standard Size Case
Format	1 Slot
Weight	300 g

FRQ 204/254
Type of Connection

FRQ 204/254 Maximum Cable Lengths

FRQ 204/254

Environmental Characteristics

FRQ 204/254
Agency
Approvals

The following table describes the connection type.

Process	2 Pluggable 11 Pole Screw/Plug-in Terminals
I/O Bus (Internal)	$1 / 3 \mathrm{C} 30 \mathrm{M}$

The following table describes the maximum cable lengths.

Counter Inputs	max 100 m shielded (longer cables on request)
Outputs and Enable Inputs	max. 400 m unshielded max 1000 m shielded

The following table describes the environmental characteristics.

Operating Temperature	$0 \ldots 60 \mathrm{C}$ for FRQ204
	$-40 \ldots+70 \mathrm{C}$ for FRQ254

The following table describes the agency approvals.
VDE 0160, UL 508; CSA 22.2 No.142, European Directive on EMC 89/336/EEC, and Low Voltage Directive 79/23/EEC Standards

Overview of MOT 20X Motion Modules

45

At a Glance

Purpose \quad The purpose of this chapter is to describe the MOT 20X Motion modules.

	WARNING
Compatibility warning	
The MOT 20X module will only operate properly when used with an	
A984, E984, or Micro 512/612 controller.	
Failure to follow this instruction can result in death, serious injury,	
or equipment damage.	

Note: The following A120 I/O modules require a loadable (SW--IODR--001) for proper operation when using certain PLCs (A984--1xx, E984--24x/251/255) with Modsoft:

- DEP 211/214/215/217
- DAP211/217
- ADU204/211/214/216
- DAU204
- VIC2xx
- MOT20x

What's in this This chapter contains the following topics:

Chapter?

Topic	Page
What are the MOT 20X Modules?	541
Overview of the MOT 201 Motion Module	542
Overview of the MOT 202 Motion Module	558
MOT 20X Module System Information	580
MOT 20X Motion Module Specifications	584

What are the MOT 20X Modules?

Brief Description

The MOT 20x modules include the MOT 201 single-width I/O module (encoder only) and the MOT 202 double-width module (resolver and encoder). They are designed to provide single-axis motion control to the 984-A120 Series PLCs.

The MOT 20x motion modules are designed to control a single axis of motion using advanced digital brushless motion control. This capability provides optimal control by eliminating potentiometer adjustments and analog velocity loops. These MOT modules are designed to operate with an A Series Compact 984 PLC-i.e., a Compact A984-120, -130, -131, -141, or -145 .

Note: The MOT 20X modules are designed to serve a variety of applications with great accuracy and speed, however certain applications might be outside their scope. Please consult Modicon for applications information if you intend to use the module specifically for precise velocity control.

The primary feedback used by the DNP servo system is position information from either a resolver or an encoder mounted to the motor. Velocity information is derived from the position information, rather than being received from a velocity transducer. This leads to some inaccuracies when using the DNP servo as a velocity controller. Small speed irregularities may result, particularly at slower speeds.

Related Publications

The following publications contain detailed information on the MOT 20X modules:

- Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001)
- Modicon Motion Development Software (MMDS) User Guide (GM-MMDS-002)

Overview of the MOT 201 Motion Module

Brief Description The MOT 201 is an encoder-only module contained in a single-width housing. It works with dc motors that use Cyberline drives and other types of dc and brushless drives from Gettys and other manufacturers. The module contains I/O to interface to the drive and the machine, including drive enable, drive fault, and a variety of userconfigurable signals. The MOT 201 is not capable of commutating brushless motors. A front view of the MOT 201 Motion module is provided below.

LEDs

Fourteen LEDs are visible on the front panel to indicate various functions and conditions.

Refer to the following diagram and table for the indicator positions, nomenclature and a brief explanation of their functions.

The following table describes the meaning of each front panel indicator.

U (POWER OK)	Green	Backplane power is present
Comm (MODBUS)	Amber	Blinking = RS-232 serial port communication link active
Moving	Amber	MOT is still commanding new positions for the motor
In pos	Amber	Difference between the target position and the actual motor position less than In Position Band parameter value
Drv fault (DRIVE FAULT)	Red	A fault condition exists in the drive controlled by the MOT
Drv enabled (DRIVE ENABLED)	Amber	Drive enable signal to the drive is active

Ready (MODULE OK)	Green	MOT is operational. When not ON, a failure of the module has been detected. When blinking once every 3 s, module is in kernel mode and the executive must be downloaded
24Vdc	Green	24 Vdc for the I/O is present
Input 1 (+LIMIT OK)	Red	Motor has not reached the maximum limit for clockwise motion, or user-configured input 1 is active
Input 2 (- LIMIT OK)	Red	Motor has not reached the maximum limit for counterclockwise motion, or user-configured input 2 is active
Input 3 (HOME LIMIT)	Red	Motor is not at the Home switch, or user- configured input 3 is active
Input 4 (JOG +)	Red	Jog + switch or user-configured input 4 is active
Input 5 (JOG -)	Red	Jog - switch or the user-configured input 5 is active
Output 1 (BRAKE)	Red	Brake control is active(brake released), or user- configured output 1 is active

Connectors
The MOT 201 has five connectors, J1 ... J5. The J1 and J2 connectors are located on the front of the module.

The J2 connector is a standard 9-pin, D-shell RS-232 serial port. Its operating mode and communications parameters are set via a DIP switch on the back of the unit (discussed later in this chapter).

MOT 201 J1 Connector

The J1 connector is a 22-terminal screw I/O connector, as shown in the Discrete I/ O, Analog Output, and Encoder Power wiring diagram below.

J1 discrete connections are listed in the following table.

Pin \#	Function	Pin \#	Function
$1 \ldots 6$	Not Used	15	+Travel limit/Aux in 1
7	Analog output	16	-Travel limit/Aux in 2
8	Analog output return	17	Home/Aux in 3
9	+5 Vdc	18	Jog+/Aux in 4
10	Encoder Power	19	Jog-/Aux in 5
11	Encoder power return	20	Aux 1 output/Brake
12	Not Used	21	24 Vdc common

13	24 Vdc power	22	24 Vdc common
14	24 Vdc power		

MOT 201 Bottom The J3, J4 and J5 connectors are located on the bottom of the module. Connectors

MOT 201 J3 Connector

J 3 is a 10-pin motor drive connector.

J3 drive connections are listed in the following table.

Pin \#	Function	W922 Cable Color
1	+Velocity command	Black
2	Common	White
3	-Velocity command	Blue
4	Common	Orange
5	Drive fault input	Yellow
6	Drive enable contact (N.C.)	Red
7	Drive enable contact (N.O.)	Brown
8	Drive enable common	Green
9	Common	Purple
10	Key	Gray

MOT 201 J4 and J5 Connectors

J4 and J5 are 10-pin encoder feedback connections. The pins on these two connectors have nearly identical functionality (pins 5 and 6 are different).

J4 and J5 encoder feedback connections are listed in the following table.

Pin \#	Function
1	Encoder power
2	+ Phase A
3	+ Phase B
4	+ Mark
5	Key (J5)
6	Key (J4)
7	- Phase A
8	- Phase B
9	- Mark

10 Encoder Power return

The Encoder Feedback Interface

The MOT 201 accepts feedback from one or two +5 V differential encoders. You may pick between the following two connection options:

- Option 1 uses an AS-W922-008 or AS-W922-015 generic cable, which is terminated at one end and unterminated at the other to plug into either encoder connector on your module
- Option 2 connects to the encoders through a cable and an optional AS-BR85-110 Breakout module.

An AS-W923 encoder breakout cable has a male DB25 connector at one end; the other end has two connectors to attach to the module's two encoder connectors.

Encoder Connection Options	Cables and breakout modules are listed in the followi		
	Part Number	Use	Cable Description
	AS-W921-XXX	Drive	Cyberline1000 to 10-position AMP Shielded MT Connector (008, 015)
	AS-W922-XXX	Generic	10-pin AMP Shielded MT Connector to Wires $(008,015)$
	AS-W923-XXX	Encoder Break out	Two 10-pin AMP Shielded MT Connectors to DB25 Connector (Y Cable) (003, 006)
	AS-W955-XXX	Modbus	DB9 to DB25 (012, 025)
	AS-W956-XXX	Modbus	$\begin{aligned} & \text { DB9 to DB9 (012, } \\ & \text { 025) } \end{aligned}$
	AS-BR85-110	Breakout Module	For use with ASW923 cable
	XXX stands for the cable length.		

The breakout module is a DIN rail-mountable terminal block PCB assembly and accommodates discrete wiring from the encoder(s). It has a female DB25 connector for the cable attachment and the terminals are clearly marked with the appropriate encoder connections.

Note: When configuring feedback devices, remember that Channel 1 is not used by the MOT 201. Encoder 1 (J4) = Channel 2, and encoder 2 (J5) = Channel 3.

An external power supply is typically used with an encoder (see illustration below). However, when total encoder power (for one or two encoders) requires no more than 75 mA of power, you may use 5 Vdc power from the Compact 984 and thus eliminate the need for the external power supply.

Discrete I/O The MOT 201 contains five discrete inputs and one discrete output. The inputs can

 be used as either user-defined discrete inputs or as predefined inputs. The discrete output as well as the inputs are controlled by the I/O command set.The register bit assignments are shown in the following diagram.

Note: Module inputs 1 (+ Limit OK), 2 (- Limit OK) and 3 (NOT HOME) default to 1 (predefined) at power-up while inputs 4 ($\mathrm{Jog}+$) and 5 ($\mathrm{Jog}-$-) default to 0 (discrete). Output 1 default condition is user-defined.

Discrete output bit definitions are shown in the following diagram.

Refer to the Single-Axis Software (SASS) Motion User Guide (GM-MOTN-001), for details on configuring the I/O.
$\mathrm{A}+/-10 \mathrm{~V}$ analog output is supplied via connector J 1 on the front of the module. This output is configured by you via the analog output setup command; it is available for diagnostic purposes, or it can be placed under user program control.

The Motor Drive Interface

The interface to the motor drive from the MOT 201 consists of several digital and analog I/O signals:

- A drive enable signal
- A drive fault signal
- Velocity or current command signals

A form C relay is provided to enable the drive. A true high drive fault signal is accepted from the drive that must be held at ground to indicate a non-fault condition.

A differential +/-10 V analog signal is provided to control a dc drive. This signal can be software configured to be a velocity or current command. Connection for the motor drive is made to the module through the J3 connector.

Two AS-W922 cables are available. They are terminated to plug into your module at one end and unterminated at the other end.

Note: Servo motor thermal overload switches should always be monitored to prevent equipment damage. The MOT 201 does not have a dedicated input for this function. Either a MOT 201 input or some other system input should be used in your system design to monitor this condition.

The DIP Switch

The MOT 201 has an RS-232 serial port to connect the module to an IBM PC (or compatible) running the Modicon Motion Development Software (MMDS). A twoposition DIP switch is located on the rear panel of the module. SW1 is used to specify the module's operating mode (984 or MMDS control). SW2 is used to specify the communication characteristics of the Modbus port upon power-up.

The MOT 201 DIP switch settings are listed in the following table.

DIP Switch	Position	Function
SW1	Left/Open (factory set)	Compact 984 Controlled
	Right/Closed	MMDS Controlled
SW2	Left/Open (factory set)	Programmed baud
	Right/Closed	Modbus Default

The MOT 201 DIP switch locations are shown in the following illustration.

Setting the Operating Mode with SW1

The SW1 setting determines which device can write to the MOT 201. The setting is read at power-up and selects either the MMDS or the Compact 984 to control the operation of the module. This mode selection is a safety feature that prevents you from accidentally issuing commands to the module using MMDS while it is being controlled by the Compact 984.
The control priority (SW1) is as follows:

1. When only MMDS is attached to the module, it has write privilege regardless of the setting on SW1.
2. When only the Compact 984 is communicating via Traffic Cop to the module, it has write privilege regardless of the setting of SW1.
3. When the Compact 984 has issued the local lockout command, it has write privileges regardless of the setting of SW1 and whether or not MMDS is attached.
4. When the local lockout command is not issued and both the Compact 984 and MMDS are communicating to the module, the setting of SW1 controls which device has write privilege.

Note: Either device may read (i.e. a GET command) at any time. However, reading the error \log (a system command) is not allowed without write privilege because the log is lost once it is read. Refer to Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001) for details.

Switch\#2 controls the Modbus communication characteristics. When the module is powered up, SW2 is read. When the switch is closed then the default characteristics are used. When the switch is open then the communication characteristics last saved in the module are used.

Once communication characteristics are initialized, they may be changed at any time under software control only if SW2 is in the open position. Refer to Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001) for details.
When SW2 is closed, the Modbus port default characteristics are as follows:

- 1 start bit
- 7 data bits
- 1 stop bit
- Even parity checking
- 9600 baud rate

Modbus Connections

The 9-pin serial modbus connections are listed in the following table.

Signal	Computer Pin	$\begin{aligned} & \text { MOT } \\ & \text { Pin } \end{aligned}$	Signal	Function Shield
	1NC	1NC		
TXD	2	3	RXD	Serial data
RXD	3	2	TXD	Serial data
GND	5	5	GND	Ground
DTR	4	6	DSR	Control line
DSR	6	4	DTR	Control line
RTS	*7	/ 7*	RTS	Control line
CTS	*8 /	8*	CTS	Control line
	9NC	9NC	+5 V	Future Use

	CAUTION
Ensure 5 V power is correct for the application.	
Pin 9 supplies 5 V of power $(75 \mathrm{~mA})$. Make sure this is the correct pin	
for your application before wiring.	
Failure to follow this instruction can result in injury or equipment	
damage.	

The 25-pin serial modbus connections are listed in the following table.Modbus Connections for 25-Pin Serial.

Signal	MOT Pin	Computer Pin	Signal	Function
	1 NC	1 NC		Shield
TXD	2	2	RXD	Serial data
RXD	3	3	TXD	Serial data
GND	5	7	GND	Ground
DTR	4	6	DSR	Control line
DSR	6	20	DTR	Control line
RTS	$* 7$	4^{*}	RTS	Control line
CTS	*8 /	5^{*}	CTS	Control line
+5 V	$9 N C$	$9 N C$	+5 Vdc	Future Use
* These pins are jumpered, (7\&8 on MOT, 4\&5 on computer).				

Overview of the MOT 202 Motion Module

Brief Description The MOT 202 is a resolver and encoder designed to interface directly to the Modicon Cyberline CL1000 series and M100 series of brushless servo amplifiers and brushless motors in addition to all the MOT 202 capabilities. Control of the MOT 202 can be:

- Through the backplane of the A120 Series I/O system bus interface
- Through the Modbus interface
- By internally stored user programs

The MOT 202 is a double-size module that requires two contiguous slots in an A120 I/O backplane.

Note: The MOT 202 does not fit in the last two (rightmost) slots of a DTA 200 or DTA 201 backplane.

A front view of the MOT 202 Motion module is provided below.

LEDs
Fifteen LEDs are visible on the front panel to indicate various functions and conditions.

Refer to the following diagram and table for the indicator positions, nomenclature and a brief explanation of their functions.

Indicator	Color	Meaning
U (POWER OK)	Green	Backplane power is present
Comm (MODBUS)	Amber	Blinking = RS-232 serial port communication link active
Moving	Amber	MOT is still commanding new positions for the motor
In pos	Amber	Difference between the target position and the actual motor position less than In Position Band parameter value

Drv fault (DRIVE FAULT)	Red	A fault condition exists in the drive controlled by the MOT
Drv enabled (DRIVE ENABLED)	Amber	Drive enable signal to the drive is active
Ready (MODULE OK)	Green	MOT is operational. When not ON, a failure of the module has been detected. When blinking once every 3 s, module is in kernel mode and the executive must be downloaded
24Vdc	Green	24 Vdc for the I/O is present
Input 1 (+LIMIT OK)	Red	Motor has not reached the maximum limit for clockwise motion, or user-configured input 1 is active
Input 2 (- LIMIT OK)	Red	Motor has not reached the maximum limit for counterclockwise motion, or user- configured input 2 is active
Input 3 (HOME LIMIT)	Red	Motor is not at the Home switch, or user- configured input 3 is active
Input 4 (JOG +)	Red	Jog + switch or user-configured input 4 is active
Input 5 (JOG -)	Red	Jog - switch or the user-configured input 5 is active
Output 1 (BRAKE)	Red	Brake control is active(brake released), or user-configured output 1 is active
Motor O.T.	Red	Motor over temperature condition

Connectors
The MOT 202 has 7 connectors (J1, J2, and J8 on the front of module) (J4, J5, J6, and J 7 on the bottom of module).

The J2 connector is a standard 9-pin, D-shell RS-232 serial port. Its operating mode and communications parameters are set via a DIP switch on the back of the unit (discussed later in this chapter).

MOT 202 J1 Connector

The J1 connector is a 22-screw terminal I/O connector, as shown in the Discrete I/ O, Analog Output, and Encoder Power wiring diagram below.

J 1 discrete connections are listed in the following table.

Pin \#	Function	Pin \#	Function
$1 \ldots 6$	Not Used	15	+Travel limit/Aux in1
7	Analog output	16	-Travel limit/Aux in 2
8	Analog output return	17	Home/Aux in 3
9	+5 Vdc	18	Jog+/Aux in 4
10	Encoder Power	19	Jog-/Aux in 5
11	Encoder power return	20	Aux 1 output/Brake
12	Not Used	21	24 Vdc common
13	24 Vdc power	22	24Vdc common
14	24 Vdc power		

MOT 202 J8 Connector

J 8 is a 22-screw terminal connector that may be for the motor drive and resolver wiring. The top half of J 8 (terminals 1 ... 11) is for motor wiring.

J8 drive connections are listed in the following table.

Pin \#	Function	W922 Cable Color
1	+Velocity command	Black
2	Common	White
3	-Velocity command	Blue
4	Common	Orange
5	Drive fault input	Yellow
6	Drive enable contact (N.C.)	Red
7	Drive enable contact (N.O.)	Brown
8	Drive enable common	Green
9	Common	Purple
10	Key	Gray

Note: The J6 connector on the bottom of the module performs the same motor wiring function. If you are using an AS-W922 cable for motor drive wiring, use the J6 connector. If not, you can choose between J8 or J6.

Bottom Half J8 Connector

The bottom half of J8 (terminals 12 ... 22) is for resolver wiring.

J8 Pin \#	J7 Pin \#	Function
12	2	Reference output high
13	7	Reference output low
14	4	Shield
15	3	Sine input high
16	8	Sine input low
	Shield	
17	5	Cosine input high
18	10	Cosine input low
19	1	Motor O.T. input high
20	6	Motor O.T. input low
21	9	Not Used

MOT 202 Bottom

Connectors
Note: The J7 connector on the bottom of the module performs the same resolver wiring function as terminals 12 ... 22 on J8. If you are using an AS-W922 cable for resolver wiring, use the J7 connector. If not, you can choose between J8 or J7.

The J4 ... J7 connectors are located on the bottom of the module.

MOT 202 J5 Connectors

J 4 and J 5 are 10-pin encoder feedback connections. The pins on these two connectors have nearly identical functionality (pins 5 and 6 are different). PCB

J4 and J5 encoder feedback connections are listed in the following table.

Pin \#	Function
1	Encoder power
2	+ Phase A
3	+ Phase B
4	+ Mark
5	Key (J5)
6	Key (J4)
7	- Phase A
8	- Phase B

9	- Mark
10	Encoder Power return

MOT 202 J6 and J7 Connectors

J 6 is a 10-pin connector that may be for the motor drive wiring.

Note: The first 11 terminal screws of the J8 connector on the front of the module perform the same motor wiring function. If you are using an AS-W922 cable for motor drive wiring, use the J6 connector. If not, you can choose between J8 or J6.

J 7 is a 10-pin connector that may be used for resolver wiring:
IO BUS INTERFACE

Note: The J7 performs the same resolver wiring function as terminals $12 \ldots 22$ of the J 8 connector on the front of the module. If you are using an AS-W922 cable for resolver wiring, use the J 7 connector. If not, you can choose between J 8 or J7.

The Encoder Feedback Interface

The MOT 202 accepts feedback from one or two +5 V differential encoders. You may pick between the following two connection options:

- Option 1 uses an AS-W922-008 or AS-W922-015 generic cable, which is terminated at one end and unterminated at the other to plug into either encoder connector on your module
- Option 2 connects to the encoders through a cable and an optional AS-BR85-110 Breakout module.

An AS-W923 encoder breakout cable has a male DB25 connector at one end; the other end has two connectors to attach to the module's two encoder connectors.

Cables and breakout modules are listed in the following table.

Part Number	Use	Cable Description
100-338-XXX	Drive	Cyberline1000 to Discrete Wires $(008,015)$
AS-W921-XXX	Drive	Cyberline1000 to 10-position AMP Shielded MT Connector $(008,015)$
AS-W922-XXX	Generic	$10-$ pin AMP Shielded MT Connector to Wires (008, 015)

AS-W923-XXX	Encoder Breakout	Two 10-pin AMP Shielded MT Connectors to DB25 Connector (Y Cable) (003, 006)
AS-W955-XXX	Modbus	DB9 to DB25 (012, 025)
AS-W956-XXX	Modbus	DB9 to DB (012, 025)
AS-BR85-110	Breakout Module	For use with AS-W923 cable
XXX stands for the cable length.		

The breakout module is a DIN rail-mountable terminal block PCB assembly and accommodates discrete wiring from the encoder(s). It has a female DB25 connector for the cable attachment and the terminals are clearly marked with the appropriate encoder connections.
An external power supply is typically used with an encoder (see illustration below). However, when total encoder power (for one or two encoders) requires no more than 75 mA of power, you may use 5 Vdc power from the Compact 984 and thus eliminate the need for the external power supply.

NOTE:
IF USING INTERNAL POWER YOU MUST ADD THESE EXTERNAL JUMPERS.

Discrete I/O

The MOT 202 contains five discrete inputs and one discrete output. The inputs can be used as either user-defined discrete inputs or as predefined inputs. The discrete output as well as the inputs are controlled by the I/O command set.

The register bit assignments are shown in the following diagram.

Note: Module inputs 1 (+ Limit OK), 2 (- Limit OK) and 3 (NOT HOME) default to 1 (predefined) at power-up while inputs $4(\mathrm{Jog}+$) and 5 ($\mathrm{Jog}-$) default to 0 (discrete).

Discrete output bit definitions are shown in the following diagram.

$$
\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
& 1= & \text { Brake }
\end{array}
$$

Refer to the Single-Axis Software (SASS) Motion User Guide (GM-MOTN-001), for details on configuring the I/O.

Analog Output

$\mathrm{A}+/-10 \mathrm{~V}$ analog output is supplied via connector J1 on the front of the module. This output is configured by you via the analog output setup command; it is available for diagnostic purposes, or it can be placed under user program control.

The Motor Drive Interface

Resolver Feedback/ Thermal Interface

The interface to the motor drive from the MOT 202 consists of several digital and analog I/O signals:

- A drive enable signal
- A drive fault signal
- Three-phase current commands

A form C relay is provided to enable the drive. A true high drive fault signal is accepted from the drive that must be held at ground to indicate a non-fault condition.

Three +10 V analog current commands are provided to control a three-phase brushless ac motor. For dc drives, only two of the three phases (phase A and phase C) are used. Connection for the motor drive may be made to the module through the connector on the bottom of the module (J6) or to the discrete wiring points on the front (J8) of the module.

Two AS-W922 cables are available. They are terminated to plug into your module at one end and unterminated at the other end.

The MOT 202 may use a resolver to provide feedback for the position, velocity and commutation of the motor. A resolver is essentially a rotary brushless transformer that provides absolute position information to the MOT. The MOT calculates an absolute position from the continuous signal of the resolver.

The MOT provides a reference output to drive transmit mode resolvers. The drive signal is a 3.75 kHz , self-compensating sine wave. The amplitude of the reference is adjusted by the module (if necessary) at power-up to get returned signal strengths of approximately 2 Vrms at the sine and cosine inputs of the module.
Connection for resolver feedback may be made to the module through the connector on the bottom of the module (use cable AS-W922-XXX) or to the discrete wiring points on the front of the module.

Note: If the cable length between MOT and the resolver is more than 100 ft , please consult with Modicon.

The module can also monitor motor temperature by means of a thermistor or thermostatic switch. The two-wire input recognizes a high impedance (greater than 3072 or open switch) as an over temperature condition. When the input is not used it must be shorted. The over-temperature fault is reported to MMDS or the Compact 984 as a drive fault. The over-temperature fault may be distinguished from a normal drive fault by observing the associated indicator on the front of the module.

One two-position DIP switch is located on the rear panel of the module. SW1 determines the module's mode of operation (984 or MMDS control). SW2 determines the communication characteristics of the Modbus port upon power up of the module.

DIP Switch	Position	Function
SW1	Left/Open (factory set)	Compact 984 Controlled
SW1	Right/Closed	MMDS Controlled
SW2	Left/Open (factory set)	Programmed baud
	Right/Closed	Modbus Default

The MOT 202 DIP switch locations are shown in the following illustration.

Setting the Operating Mode with SW1

The SW1 setting determines which device can write to the MOT 202. The setting is read at power-up and selects either the MMDS or the Compact 984 to control the operation of the module. This mode selection is a safety feature that prevents you from accidentally issuing commands to the module using MMDS while it is being controlled by the Compact 984.

The control priority (SW1) is as follows:

1. When only MMDS is attached to the module, it has write privilege regardless of the setting on SW1.
2. When only the Compact 984 is communicating via Traffic Cop to the module, it has write privilege regardless of the setting of SW1.
3. When the Compact 984 has issued the local lockout command, it has write privileges regardless of the setting of SW1 and whether or not MMDS is attached.
4. When the local lockout command is not issued and both the Compact 984 and MMDS are communicating to the module, the setting of SW1 controls which device has write privilege.

Note: Either device may read (i.e. a GET command) at any time. However, reading the error \log (a system command) is not allowed without write privilege because the log is lost once it is read. Refer to Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001) for details.

Setting the Modbus Communication Characteristics (SW2)

Switch\#2 controls the Modbus communication characteristics. When the module is powered up, SW2 is read. When the switch is closed then the default characteristics are used. When the switch is open then the communication characteristics last saved in the module are used.

Once communication characteristics are initialized, they may be changed at any time under software control only if SW2 is in the open position. Refer to Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001) for details.

When SW2 is closed, the Modbus port default characteristics are as follows:

- 1 start bit
- 7 data bits
- 1 stop bit
- Even parity checking
- 9600 baud rate

The 9-pin serial modbus connections are listed in the following table.

Signal	Computer Pin	$\begin{aligned} & \text { MOT } \\ & \text { Pin } \end{aligned}$	Signal	Function
	1NC	1NC		Shield
TXD	2	3	RXD	Serial data
RXD	3	2	TXD	Serial data
GND	5	5	GND	Ground
DTR	4	6	DSR	Control line
DSR	6	4	DTR	Control line
RTS	*7	/7*	RTS	Control line
CTS	*8 /	8*	CTS	Control line
	9NC	9NC	+5 V	Future Use
* These pins are jumpered (788) on both.				

	CAUTION
Ensure 5 V power is correct for the application.	
Pin 9 supplies 5 V of power $(75 \mathrm{~mA})$. Make sure this is the correct pin	
for your application before wiring.	
Failure to follow this instruction can result in injury or equipment	
damage.	

The 25-pin serial modbus connections are listed in the following table.Modbus Connections for 25-Pin Serial

Signal	MOT Pin	Computer Pin	Signal	Function

	1NC	1NC		Shield
TXD	2	2	RXD	Serial data
RXD	3	3	TXD	Serial data
GND	5	7	GND	Ground
DTR	4	6	DSR	Control line
DSR	6	20	DTR	Control line
RTS	*7	$/ 4^{*}$	RTS	Control line
CTS	*8 /	5^{*}	CTS	Control line
+5 V	$9 N C$	$9 N C$	+5 Vdc	Future Use
* These pins are jumpered, (7\&8 on MOT, 4\&5 on computer).				

+EOT and -EOT Limits

The +EOT and -EOT normally closed limit switches indicate the Ends Of Travel so the MOT can stop the motor to avoid damage.

DANGER

Mis-wiring Danger
When wiring, ensure that moving positive moves you towards the + , and negative motion moves you towards the -EOT.
Failure to follow this instruction will result in death or serious injury.

The following diagram illustrates a typical MOT 20X installation.

If either of these inputs becomes 0 volts (open in the line), the MOT will generate a fatal error.

Note: If you reach the limit switches, the MOT disables the drive and stops the motor. Otherwise system safety may be compromised.

The MOT also has software programmable end-of-travel limits to provide over-travel protection. These programmable limits stop the drive and signal a non-fatal error.
The end-of-travel limit switches provide backups for the software limits. The priority should be as follows:

Use software limits as the primary end-of-travel limit. Allow tolerance so you read the software limits before striking the limit switches.

Note: If you don't set the zero position properly, the software end-of-travel limits won't be where expected.

The hardware limit switches should be set outside the software limit switches. This ensures a safe system shut down and thus prevents any over shooting that may result in mechanical damage.

You may use mechanical stops to limit motion and act as a fail-safe stop. These back up the software and hardware limit switches. Plan these as you do your mechanical design.

Home Limit
 By using a home limit switch, the MOT can send the machine to its home position. The machine is considered at home when it satisfies two conditions:
 - Home limit switch open-this gives the approximate home position
 - Encoder or resolver at zero position
 Note: In order to ensure that your motor establishes the same home position each time, always home in the same direction. This approach gives you a reliable and consistent homing system. It is not completely dependent on a critical switch setting.

Flash Memory
Home works properly even if the machine holds the home switch open for several feedback revolutions. The MOT always finds the same zero. How it chooses the resolver (or encoder) zero depends on its approach. Home is the first feedback zero in the direction of the Home after the switch is open.

The MOT comes with a flash EEPROM that allows storage of application programs and configuration parameters, such as servo parameters, speed limits, etc. It will also accept firmware updates as firmware enhancements become available.

Communications Protocol

On-line/Off-line Development (MMDS)

System PreCheck

Releasing the

 MOTCommunications with the MOT is through six pairs of $4 x$ and $3 x$ registers (I/O mapped to the MOT), using a very rigid format. The first register sent is always the control register and the second register is always the command register. The first register returned is always the current status of the MOT, while the second register returned is always an echo of the command register. All remaining registers, data register $1 . . .4$, are reserved for data and are used as necessary. For additional information refer to Single-Axis Software System (SASS) Motion User Guide (GM-MOTN-001).

Note: For I/O Map information refer to the 984-A120 Compact Programmable Controllers User Guide (890 USE 108 00).

The Modicon Motion Development Software (MMDS Ver. \# 3.00 or higher) is an on-line/off-line software package which runs on a user-supplied IBM PC or compatible computer. [MMDS is purchased separately.] MMDS lets you connect the computer with the MOT (through an RS-232 serial interface) to set parameters, check module diagnostics, and exercise the motor during initial system setup. It also lets you write motion programs and download them to the Compact 984 to be used with the MRTM loadable function block, or you can download into the MOT directly.

Do this before you apply power to the MOT system:

Step	Action
1	Check all wiring-compare your wiring to the previous wiring diagrams
2	Make sure the dc power is within the range specified for the MOT.
3	Inspect the motors and loads-Are the motors securely mounted? Is it safe to run the motors? If not, remove keys from motor shafts to disconnect the motors from their mechanical loads.
4	Be sure the Compact 984 is stopped-This prevents an accidental local lockout command issued from the Compact 984 which cannot be changed by the MMDS. The MMDS is not capable of changing this setting.

The only way to release the MOT is to issue the release lockout command from the Compact 984. If a Set or Motion Command is issued while the Modbus is locked out (Compact 984 command), the MOT will reject the command and set a fault bit true.

MOT 20X Motion Module Specifications

Table of Specifications

Module Topology, Required Loadable

The following table describes MOT 20X Motion Module Specifications

The following section describes Module Topology and Required Loadable Specifications.

Module Topology	Number of Discrete Inputs	5
	Number of Discrete Outputs	1
	Number of Analog Outputs	1
Required Loadable	SW-IODR-001	

Power Supplies, The following section describes Power Supplies and DIN Rail Grounding DIN Rail Grounding

Power Supplies	I/O system bus 5 Vdc	MOT 201	300 mA
		MOT 202	600 mA
DIN Rail Grounding	$<0.1 \Omega$		

Input/Outputs, Drive Interface

Input/Outputs	Digital	Optically Isolated	to 500 Vdc
		Output drive capability	150 mA (using customer supplied 20 ... 28 Vdc , true high)
		Input impedance	$3.5 \mathrm{~K} \Omega$ (ON @ 15 Vdc minimum, OFF @ 5 Vdc maximum, true high)
	Analog	Drive capability	+/-10 Vdc, 3 mA
		Resolution	12 bits
		Accuracy	+/-100 mVdc (without offsets)
			+/- 50 mVdc (with offset)
Drive Interface	Drive fault input		True high, pulled up internally
	Drive enable relay		form C contacts, 30 Vdc @ 0.5 A resistive
	dc motors (201/202)	Command signal	+/-10 Vdc @ 3 mA differential
		Current or velocity command	Software selectable
		Phasing	Positive voltage for CW motion
	ac motors (202 only)	Three phase current	+/-10 Vdc @ 3 mA
		Command signal	Summing to $0+/-0.1 \mathrm{Vdc}$

The following section describes Input/Outputs and Drive Interface Specifications.

Communications The following section describes Communications and Resolver Feedback , Resolver Specifications.
Feedback

Communications	Modbus		1 RS-232 serial port interface
	Baud rate		300 ... 9600, 9600 default, set by software (for ASCII only)
	5 Vdc supply		75 mA maximum
Resolver Feedback	Resolver reference drive		3.75 +/- 0.05 kHz ; $2+/-1.0 \mathrm{Vrms}$
			100 mA RMS drive capability
			200 mW maximum
	Resolver sine/cosine inputs		$7 \mathrm{~K} \Omega$ impedance
	Resolver resolution	14 bits	to 1350 RPM
		12 bits	to 6000 RPM
		with standard transmit style resolver	+/- 10 min of arc typical
	System accuracy		16 bits to 300 RPM
			+/- 15 min of arc maximum
	System Repeatability		+/-3 min of arc
	Cable length		Consult Customer Service if over 100 ft

Encoder The following section describes Encoder Feedback Specifications Feedback

Encoder Feedback	Differential signal	2 V minimum
	Phase	B leads A for CW motion
	Input impedance	145Ω nominal
	Maximum encoder frequency	500 kHz square wave
		350 ns minimum time be tween edges from phase A and B
	Encoder feedback loss	Detected on phase A and B differential signals. Loss of marker signal is not to be detected; results in failure to home the system
	Resolution	4 times encoder line count
	Marker	Positive pulse for proper homing
	Power for encoder from Compact 984	5 V nominal
		4.4 V minimum
		75 mA maximum
	Power for encoder from external power supply	depends on encoder requirements
	Cable length	Consult Customer Service if over 300 ft

Motion, The following section describes Motion and Thermistor Resistance Specifications.
Thermistor
Resistance

Motion	Absolute positioning range	32 bit resolution, convertible to in, mm, or any other user-definable unit
		Speed range
Thermistor Resistance $(202$ only $)$	Cold Resistance	$0 . .6000$ RPM
	Hot Resistance	$1 \mathrm{~K} \Omega$ maximum

I/O Map, The following section describes I/O Map and Dimensions Specifications. Dimensions

I/O Map	Register 3x/4x		6 in/6 out
Dimensions	MOT201	(W $\mathrm{W} \times \mathrm{H}$)	$40.3 \times 145 \times 117.5 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
	MOT 202	(W $\mathrm{W} \times \mathrm{CD}$)	$86.3 \times 145 \times 117.5 \mathrm{~mm}$
			$3.4 \times 5.6 \times 4.5 \mathrm{in}$
	MOT 201	Weight	0.36 kg
			0.8 lb
	MOT 202	Weight	0.61 kg
			1.35 lb
	Number of slots	MOT 201	1
		MOT 202	2
	Breakout Module		$7.6 \times 13.5 \times 11.4 \mathrm{~mm}$
			$3.0 \times 5.31 \times 4.5$ in*

Agency The following section describes Agency Approvals and Environmental Approvals, Environmental Characteristics Specifications.

Agency Approvals	MOT 201 MOT 202	VDE 0160; UL 508; and CSA C22.2 No.142; and European Directive EMC 89/336/EEC Standards	
		VDE 0160; UL 508; and CSA C22.2 No.142 Standards	
Environmental Characteristics	Temperature	Operating	$0 \ldots 60$ degrees C
		Storage	-40 ... +85 degrees C
	Humidity	Operating	93 percent Rh at 60 degrees C , noncondensing
		Storage	
	Vibration	$0.075 \mathrm{~mm}$ displacement amplitude	$10 . . .57 \mathrm{~Hz}$
		1 g	$57 \ldots 150 \mathrm{~Hz}$

Note: The double-width MOT 202 module does not fit in the last two (rightmost) slots in the DTA 200 and DTA 201 backplanes. Select alternate slots in the backplane when mounting the MOT 202.

Overview of the VIC/VRC/CTR 2XX Counter Input Module

46

At a Glance

Purpose \quad The purpose of this chapter is to describe the VIC/VRC/CTR 2XX Counter Input Module.

What's in this
This chapter contains the following topics:

Topic	Page
What is the VIC/VRC/CTR 2XX Counter Input Module?	592
VIC/CRC/CTR 2XX Counter Input Module LEDs	593
Installation of the VRC/CTR 2XX Module	596
VIC/CRC/CTR 2XX Counter Input Module Field Wiring	596
VIC/CRC/CTR 2XX Counter Input Module Configuration for 16-bit Compact Controllers	597
Troubleshooting	607
VIC/CRC/CTR 2XX Counter Input Module Specifications	610
VIC/CRC/CTR 2XX Counter Input Module for Compact 32-bit Controllers	613

What is the VIC/VRC/CTR 2XX Counter Input Module?

Brief Description

Note: The BVIC-200, 205, 212, and 224 modules are now referred to as BVRC200, BCTR-205, 212 and 224 respectively. The VRC200 is designed for use as a Variable Reluctance Counter to be used with AC signals. The Counter modules (CTR205/212/224) are designed for counting DC input signals at 5 , 12 or 24 volts DC. The VRC and CTR modules are functionally the same as the original VIC modules except that they are powered off the 984's power supply instead of an external supply. The VRC and CTR models numbers also tie in the modules' applications more closely with their name.

The VRC/CTR series of counter input modules allows you to directly connect up to four high speed pulse or four VRC inputs (flowmeters, positive displacement meters, ac waveforms, etc.) to a single module. The module uses input metering Device K Factor information, and can modify this value to compensate for wear or application abnormalities.

The four VRC/CTR modules operate identically; each supports a different voltage input level.

VRC-200	VRC inputs (.025 to 36 Vac Peak typical)
CTR-205	5 Vdc
CTR-212	12 Vdc
CTR-224	24 Vdc

VIC/CRC/CTR 2XX Counter Input Module LEDs

Introduction The front of the VRC/CTR module has LED indicators that provide operational status, and incoming pulse annunciation.

Amber	Module powered-up and passed power-up diagnostics
Green	Module is configured
Red	Input data present

LED Locations and Wiring of the VRC/CTR Module

The following diagram illustrates the LED locations and wiring of the VRC/CTR module.

LED Locations and Wiring of the VIC200, 205, 212,

and 212 Modules

The following diagram illustrates the LED locations and wiring ONLY of the VIC200, 205, 212, and 212 modules.

Installation of the VRC/CTR 2XX Module

Overview Installing Installing the VRC/CTR 2XX modules consists of:
- Field wiring the module for the application selected
- Configuring the module to fit its application

VIC/CRC/CTR 2XX Counter Input Module Field Wiring

Abstract

Introduction The VRC/CTR module is capable of detecting extremely low voltage signals. It is very important that you minimize the amount of electrical interference that the module is exposed to. Also, exercise caution with low signal level wiring (turbine meters, pulse transducers etc.). Do not mix signal and power wiring, and ensure that signal wires cross power wiring at 90° angles.

Cables connecting field devices to the VRC/CTR module should be limited to 100 ft (30.6 m) or less. Specifications for the cable should be equal to or exceed those of Belden \#8760. Grounding of the shield and instrument wires should occur only at the VRC/CTR module end of the cable. Wiring to the incoming power terminals should be protected by a field-mounted, slow blow fuse rated at 250 mA .

VIC/CRC/CTR 2XX Counter Input Module Configuration for 16-bit Compact Controllers

Output Registers The VRC/CTR 2XX uses three 4 x output registers and three 3 x input registers, I/O mapped as BIN data type.

Output Register	Function
$4 x$	Factor Data Word
$4 x+1$	Control Word 1
$4 x+2$	Control Word 2

Factor Data Word
 This register is used to send into the module K or Meter factor data for each of the four input channels. Control Words 1 and 2 are used to load this factor data into the module.

K Factor Valid Valid K factor values are integer numbers in the range $1 \ldots 65,535$. K factor values Data are typically located on the meter housing, and should be entered exactly as seen on the housing. If you want data to be counted as engineering units, this is where the value would be entered.

Factor data values loaded into each channel inform the module how many pulses to count before incrementing an on-board counter for each input channel. If a value is loaded into the K factor location, the module will provide information to the PLC based on each channel's K factor.
If a channel's K factor is zero (0), the module will provide raw or unit counts to the PLC. To change this value, simply enter a new K factor value into the factor register and sets the respective bit in output register \#2 (bits 13, 14, 15, or 16, respectively, for input channels $1,2,3$, or 4).

Meter Facto Valid Data

Control Word \#1 This register is used to:
$(4 x+1)$

- Select the input to be read

Meter factor values are used to apply a corrective offset or calibration value against a K factor. This feature allows a meter's K factor value to be modified in the field. This is helpful because a meter or field device's characteristics may change as it wears or accumulates material that affects its accuracy.

Typical data used for meter factors are numbers from 0.0001 ... 1.9999, where 1.0000 means no error exists and no correction has been made. To load a Meter factor value, you must enter a five-digit number between 00001 ... 19999 into output register 1 and set the appropriate bit in output register 3 (control word 2). Do not enter a decimal point, since the module assumes a decimal point between the fourth and fifth digits (the meter factor value has an implied decimal to the right of the most significant digit.).
This number is multiplied into the K factor value, with the result being used to form the C factor. Therefore, if you want to calculate the C factor manually,
C factor $=(\mathrm{K} \times \mathrm{M}) / 10,000$
The module as shipped from the factory defaults to a Meter factor of 10000 (unity gain). To change a Meter factor value, simply place the new value into the factor register and set the respective bit in output register 3 , bits $1,2,3$, or 4 .

- Clear input channel data
- Suspend an input channel's counting and hold its value
- Load input channel K factor data

Input Channel

 Select (Control Word 1, bits 1 ... 4)The following graphic shows the input channel select.

Only one of these bits may be ON at any time. If more than one of these bits is ON, only one channel will be displayed in the input data register. The order of Priority for determining which channel is displayed when multiple bits are ON is $1,2,3$, and 4.

Note: If auto sequence is enabled, these bits are ignored.

The following graphic shows the clear channel data.

To clear a specific channel's count data, set the appropriate bit to ON (1). If a bit is set ON, that channel's data will be reset and held to zero.

Channel Hold

 (Control Word 1, bits 9 ... 12)The following graphic shows the channel hold.

To suspend counting and HOLD a channel at a value, set the appropriate bit ON (1). The VRC/CTR will suspend counting that channel and hold the value until the bit is released (0), at which time the channel will again monitor the incoming pulses.

\triangle CAUTION

Response speed.

The Channel Hold feature is not intended for immediate or instantaneous control. The ability or speed with which the VRC/CTR module is capable of holding a value depends on a number of factors: PLC scan time, incoming pulse speed, module activity, and the status of other channels. All of these factors may influence how fast the VRC/CTR module can respond to a HOLD request from the PLC.

Failure to follow this instruction can result in injury or equipment damage.

The four bits shown below are used to load K factor data into the VRC/CTR module.

Control Word 2 This register is used to:
($4 x+2$)

LOAD METER FACTOR DATA (Control Word 2, bits 1 ... 4)

- Load input channel meter factor data
- Select the channel input data to be accumulated (counts or input frequency)
- Invoke automatic channel sequencing
- Select the factor (K, Meter, or C) to be displayed
- Select raw input frequency display

These four bits load the meter factor data into the VRC/CTR module.

Frequency Mode (Control Word 2, bits 5 ... 8)

The module can display, accumulate, or totalize incoming counts, or it can display the data in rate or frequency. Setting bits 5 ... 8 to a 1 causes data frequency to be displayed.

Auto Scan (Control Word 2, bits 9 ... 16)

The VRC/CTR module has the ability to auto scan its input channels. This feature allows you to easily integrate the VRC/CTR module into the Compact 984 PLC system with minimal ladder programming.

By setting bit 9 ON (1), the module sequentially displays each of the four input channels to register $3 \mathbf{x}$. The VRC/CTR module will sequence through each of the four channels on a $\mathbf{1 / 2} \mathrm{s}$ time base (2 s total update of all four channels).

Note: This bit will override the manual channel select bits (output word 2, bits 1... 4).

Bit 10—Display K Factor

Bit 11-Display Meter Factor

Bits 12 ... 14BITE (Built-in Test Enable)

By setting bit 10 ON (1), the module displays the K factor data for the enabled channel in input word 2. If this bit is OFF (0) and the display Meter factor bit is OFF, the module displays the calculated factor value (C Factor) for each channel in input word 2.

By setting bit 11 ON (1), the module displays the Meter factor data for the enabled channel in input word 2. If this bit is OFF (0) and the display K factor bit is OFF, the module displays the calculated factor value (C Factor) for each channel in input word 2.

Refer to Troubleshooting, p. 607 for BITE test information. Set these bits to 0 for normal information. Set to 1 for diagnostic test.

Note: Bit 15 of control word 2 is unused.

Bits 12 ... 14- Display Frequency	It may be desirable to see the raw frequency being delivered to one of the respective input channels. If bit 16 is set ON (1) and the module is in the rate mode, the data input register 1 will reflect raw frequency (Hz) being read at the respective input channel. The scaled rate and counting will continue in the background.
Input Registers	The read field consists of three $3 \mathbf{x}$ words that provide data or status information to the Compact 984 processor.
	Input Register \quad Function
	$3 x$ READ DATA
	$3 x+1$ Factor Value
	$3 x+2$ Status Word
Input Data (3x)	Count data for all four channels is displayed in this register. Data may be displayed on demand (manually) or can be sequentially (automatically) displayed by the VRC CTR module.
Factor Value $(3 x+1)$	Register 2 is used to display K, Meter, or the C Factor values used by each channel of the VRC/CTR module. This register provides a means of verifying that the factor value loaded into each channel of the VRC/CTR module is correct. You must monitor the active channel bits to accurately determine each channel's data at any given moment in time.
C Factor Data	C Factor (Calculated Factor) is the result of the K factor being multiplied by the Meter factor and then being divided by 10,000 prior to being displayed to the PLC. Meter factor default is 10000 (unity) and K factor default is 0 . When K and Meter factors are in their default state, the C factor will equal the raw frequency delivered to the VRC/CTR module by the flow meter.
Status Word $(3 x+2)$	This register is used to indicate: - When an input channel data is valid - When a channel count has rolled over - Excessive signal input frequency to a channel - Whether auto sequencing is selected - Module hardware failure

Active Channel Status (Status Word, bits 1 ... 4)

Whenever one of these bits is ON (1), the data in the READ DATA word is valid.

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Note: There will only be one bit on at any time.

The following figure shows the channel roll over bit settings.

Whenever any of these bits is ON (1), it indicates that the module has incremented the data past the 32,768 count mark for that respective channel. When any of the individual channels ($1 \ldots 4$) is at 32,767 and one more pulse is detected, the module will set the appropriate rollover bit ON (1) and clear the accumulated data (00000) for that channel.

Any pulses that are detected after the rollover bit is set will continue to accumulate for that channel starting at (00000). After the rollover bit is set and the count continues, once the count reaches 16,384 , the rollover bit will be reset to zero.
The module resets each respective rollover bit to zero (0) whenever the count in a specific channel increments from 16,383 to 16,384 .

Channel Overspeed (Status Word, bits 9 ... 12)

The following figure shows the Channel Overspeed bits.

If the module detects pulses that are faster than 12.5 kHz , the module will inform the ladder program by setting individual bits that correspond to each of the four input channels. When the overspeed flag is on, the counter is disabled.
If any of these bits is set $\mathrm{ON}(1)$, the data for that channel may be invalid. These bits are only set when the pulse stream exceeds 12.5 kHz . If the signal temporarily exceeds 12.5 kHz , the bit will be set ON only during that period. If the signal returns within the design specification, the bit will turn off. If the module is used in an application that may exceed 12.5 kHz , these bits should be monitored by the ladder logic program.

Note: Overspeed detection was designed to guard against input devices exceeding 10 kHz . The overspeed bits apply to all VRC input modes of the VIC200, and to the counter input function of the 205, 212, or 224 . If the module is configured for dc pulse applications (CTR-205, -212 or -224), the overspeed bits will function as stated above, but the frequency data being read in input register $3 x$ will remain valid until 25 kHz .

Status Word, bits The following figure shows the Auto Sequence Mode bits.
13 ... 16

All channels are read by the PLC in sequence, every 2 s .

Bit 14-Memory If bit 14 is detected in an OFF (0) state, the module's data or configuration is in Valid question. If this is the case, you may either initiate a self-test, power cycle the module, or replace the module.

Bit 15-Module Error

Bit 15 is set (1) when a hardware failure is detected within the module. If this bit is set, the module must be power cycled. If the bit does not clear after a power cycle, the module should be replaced.

Note: Bit \#16 is not used.

Troubleshooting

Amber LED Module Status is determined when the PLC goes into run mode. The table below illustrates possible module conditions.

LED Status	Description
Steady ON	Module Ready (operational)
1 blink	Module Watchdog Fault
2 blinks	Module Watchdog Fault at Startup
3 blinks	Module RAM memory failure at Startup
4 blinks	Bus interface failure at Startup
5 blinks	Module ROM memory failure
6 blinks	Module processor Startup Fault
7 blinks	General Module error

When the module detects these conditions, the amber LED blinks the appropriate number of times. After each sequence of pulses, the LED pauses (each pause is a new starting point).

Green LED

Red LED Each of the four red LEDs illuminates when data is detected. The LEDs for each of the four channels operate as follows:

LED Status	Description
Steady OFF	No incoming signal
Blinking	Incoming signal detected, $<40 \mathrm{~Hz}$
Steady ON	Incoming signal detected, $>40 \mathrm{~Hz}$

Establishing Communication

If the LEDs on the front of the module are showing, then the module is communicating with the PLC processor.

Amber	ON
Green	ON
Red	Blinking or ON

Steps after Establishing Communication

Refer to table below for steps after establishing communication:

Step	Action
1	Monitor the status of READ Word 3 bits $13 \ldots 16$ to determine what channel the module is displaying.
2	Check the front of the module to determine if the appropriate channel's red LED is pulsing or ON.
3	If the above conditions are true, check to make sure the Clear Channel bit (Write Word 2, bits 8 ... 11) for the appropriate channel is not set.
4	Check that Hold Count bit (Write Word 2, bits 5 ... 8) for the appropriate channel is not set.
5	If these bits are OFF, check to make sure that the module's self-test feature is not enabled (Write Word 3, bit 15 ON).

The module is capable of measuring frequencies up to 25 kHz , and counting pulses up to 12.5 kHz . The counter input mode stops counting inputs if the overspeed bits are set. This occurs at input frequencies over 12.5 kHz .

If the incoming cable must pass high voltage cables, make sure the signal cable passes the high voltage cable at 90 . If electrical interference is being considered, attempt to locate the VRC/CTR module as far away as possible from the P120 power supply and relay output modules. These products may generate electrical interference during operation. This does not affect the VRC/CTR module but may induce pulses on incoming channel wiring.

If the channel is configured for dc operation, the module is capable of counting up to 25 kHz . If the incoming signal is within specifications and data is still not correct, check that the data values loaded into each channel's K and Meter factor values are correct. The K and Meter factor values are used to scale incoming signals for display purposes. These values are monitored in Read word 2 and are displayed whenever a channel is enabled and either bit 7 or 6 of Write word 3 are ON.

The module is capable of detecting when incoming signals are exceeding the design limits of each channel. The module will detect when incoming signals exceed 12.5 kHz and set one of four bits (Read word 3, bits $5 \ldots 8$) for PLC use. These bits operate independently (i.e., if a channel exceeds 12.5 kHz , the remaining channels are not affected). If overspeed is detected, the respective channel will continue to operate, but the data is not guaranteed. If the incoming signal returns to less than 12.5 kHz , the overspeed bit will turn OFF.

Overspeed

 Pulsed Inputs (Square Wave)Each channel on the module is capable of being configured for dc operation on the VIC-205, 212, and 224 modules. When configured for dc operation, in the frequency input mode, each channel is capable of measuring frequencies up to 25 kHz . In the frequency input mode the overspeed bits turn on at 12.5 kHz , but the data is valid up to 25 kHz .

When configured for the counter input mode, the count value stops counting when the overspeed bits are turned on. The counter mode continues to count up to a pulse rate of 12.5 kHz .

Overspeed Builtin Test Enable (BITE)

The VRC/CTR module has built-in diagnostics that can be enabled to check the module's control electronics. These tests are automatically run each time the module is powered up but can also be run after the module is on-line. By selecting
one of three test sequences and then setting this bit ON, the module enters a selftest mode.

To terminate the self-test mode, reset the BITE Enable bit (0). Bits 13 and 14 determine the type of test that will be executed. Available tests and a brief explanation of what they accomplish are shown in the truth table below.

Truth Table for BITE Tests			
Bit 14	Bit 13	Bit 12	Description
OFF	OFF	OFF	Test disabled
OFF	ON	ON	Tests VRC/CTR Microprocessor, RAM, ROM, Ready and Run LEDs, 24 Vdc
ON	OFF	ON	Tests EEPROM, Bus Interface, Internal timers, VRC electronics, Pulse indication, Frequency, and Software products
ON	ON	ON	Overspeed and LED Indicators (requires external input from a calibrated signal generator)

Note: The two bits select the category of test in binary. If the BITE enable bit is ON, the module remains in self-test until the BITE enable bit is turned off. The enable bit and the category bits are currently only read once on entry to the BITE procedure. If you turn the bit OFF, the module will return to on line soon after the applicable test is completed. Allow 100 ms minimum for each test.

Currently, the red LED illuminates steady and the green LED flashes if the test is completed successfully. If a failure is detected, the error bit will illuminate and the red LED will blink.

VIC/CRC/CTR 2XX Counter Input Module Specifications

Table of Specifications

Electrical

 SpecificationsFrequency Specifications

The following table contains a list of VIC/CRC/CTR 2XX counter input module specifications.

VIC/VRC/CTR 2XX High Speed Input Specifications

The following section describes Electrical Specifications.

Electrical	Inputs/module		4
	Isolation		30 Vdc
	Supply Voltage for BVIC 2xx ONLY (24 Vdc power supply)		$24 \mathrm{Vdc},+/-2.4 \mathrm{Vdc}$
	Signal Voltage Range	VIC/VRC-200 (VRC inputs)	. 025 ... 36 Vac Peak typical
		VIC/CTR-205	$5 \mathrm{Vdc},+/-.5 \mathrm{Vdc}$
			Low $<=0.800$, High $>=$ 2.000 Vdc typical @ source $Z<10$ ohms
		VIC/CTR-212	$12 \mathrm{Vdc},+/-1.2 \mathrm{Vdc}$
			Low <= 65 1.920,High >= 4.800 Vdc typical @ source Z < 10 ohms
		VIC/CTR-224	$24 \mathrm{Vdc},+/-2.4 \mathrm{Vdc}$
			```Logic Low < 3.840, Log ic High > 9.600 Vdc typical @ source Z < 10 W```

The following section describes Frequency Specifications.

Frequency	VIC/VRC Inputs	$0 \ldots 10.0 \mathrm{kHz}$
	VIC/VRC/CTR Vdc Inputs- Counter   Mode	$0 \ldots 10.0 \mathrm{kHz}$
	VIC/VRC/CTR Vdc Inputs- Frequency   Mode	$0 \ldots 25.0 \mathrm{kHz}$
	VIC/VRC/CTR Pulse Width	20 micros minimum
	VIC/VRC/CTR Overspeed	12.5 kHz detection

Data Formats, Required Loadable

The following section describes Data Format and Required Loadable Specifications.

Data Formats	Accumulated, Scaled Accumulated, Rate (Hz) Scaled Rate		
	Accuracy	VIC/ CTR-205,   212,224	$+/-1$ count over full   range
		VIC/VRC-200	$+/-0.1$ percent of full   scale, $+/-1$ count
Required Loadable	SW-IODR-001 (See Appendix B, file SVI.DAT)		

Power Required, DIN Rail Grounding

Power Required	VRC/CTR External Power Source	None Required
	VRC/CTR Internal Power Source from   the backplane	275 mA @ 5 Vdc maxi   mum
	VIC External Power Source, Regulated   or Unregulated	$20 \ldots 30 \mathrm{VVdc}$
	VIC External Power Source, Typical	70 mA @ 24VVdc
	VIC Internal Power Source from the   backplane	None Required
DIN Rail Grounding	$<0.1$ Ohms	


Environment, I/O Map	The following section describes Environment and I/O Map Specifications.			
	Environment	Temperature	Operational	$0 \ldots 60$ degrees C
				32 ... 140 degrees $F$
			Storage	$-40 \ldots+85$ degrees C
				$-40 \ldots+185$ degrees F
		Humidity		0 ... 95 percent @ 60 degrees C, noncondensing
	I/O Map	Register 3x/4x		3 in/3 out


Dimensions and Agency Approvals	The following section describes Dimensions and Agency Approvals		
	Dimensions	W $\times \mathrm{H} \times \mathrm{D}$	$40.6 \times 142.2 \times 114.3 \mathrm{~mm}$
			$1.6 \times 5.6 \times 4.5$ in
		Weight	300 g
			0.70 lb
		Power Connections	60/75 copper (Cu)
		Torque on set screws	$0.5 \mathrm{in} / \mathrm{lb}$
	Agency Approvals	VDE 0160; UL 508; CSA 22.2 No.142; FM Class I, Div 2 and European Directive EMC 89/336/EEC Standards	

## VIC/CRC/CTR 2XX Counter Input Module for Compact 32-bit Controllers

## I/O Map Register

In I/O map these modules are configured with nine $3 x$ registers and one $4 x$ register The $3 x$ register assignements are as follows:

- 3x - Register 1: Input Status Word 3
- 3x - Register 2: Channel 1 Read Data
- $3 x$ - Register 3: Channel 1 Factor Value
- 3x - Register 4: Channel 2 Read Data
- 3x-Register 5: Channel 2 Factor Value
- 3x - Register 6: Channel 3 Read Data
- 3x-Register 7: Channel 3 Factor Value
- 3x-Register 8 : Channel 4 Read Data
- $3 x$ - Register 9 : Channel 4 Factor Value

3x Register 1 Input Status Word Bit Assigment


Factor value registers the display either K or M factor as selected in the $\mathrm{I} / \mathrm{O}$ map parameter screen. The value entered in the parameter screen for the associated channel will be displayed

## Control Word

I/O Map
Parameter
Screen

Real data registers display either count or frequency as selected on the I/O map parameter screen.

4X Register Control Word



There is a parameter screen for these modules where the K- Factor, Meter-Factor, Mode and common parameters for the module are entered. The following screen capture illustrates this:



## Input Screen Module Mode

For each channel, select either Counter or Frequency in the Real Data register:


Input Screen for Module Common Parameters

Select to display either K or M factor in the Factor Data registers This selection applies to a four channels:


## Overview of the ZAE 201 Counter/ Positioner Module

## At a Glance

Purpose $\quad$ The purpose of this chapter is to describe the ZAE 201 Counter/Positioner Module.
What's in this Chapter?

This chapter contains the following sections:

Section	Topic	Page
47.1	Overview of the ZAE 201 Counter/Positioner Module	619
47.2	Using the ZAE 201 Counter/Positioner Module as a High-   Speed Counter	627
47.3	Using the ZAE 201 Counter/Positioner Module as a Positioning   Controller	640
47.4	Specifications of the ZAE 201 Counter/Positioner Module	661

## 47.1 <br> Overview of the ZAE 201 Counter/Positioner Module

## At a Glance

## Purpose <br> This section provides an overview of the ZAE 201 Counter/Positioner Module.

## What's in this

 Section?| Topic | Page |
| :--- | :---: |
| What is the ZAE 201 Counter/Positioner Module? | 620 |
| LED Indicator Displays of the ZAE 201 Counter/Positioner Module | 621 |
| Choosing Operating Mode and Input Voltage Level for the ZAE 201 Counter/ <br> Positioner Module | 622 |
| Operating States of the ZAE 201 Counter/Positioner Module | 623 |
| Representing the ZAE 201 Data Blocks in the I/O Map | 624 |

## What is the ZAE 201 Counter/Positioner Module?

## Brief Product Description

The ZAE 201 is a dual-function, user-configurable module that can operate as either a high speed counter or to monitor a simple one-axis positioning application. The ZAE 201 has two output relays, the operation of which are specified when the module is parameterized for either counting or positioning functions. Operational power for the module is 24 Vdc , and position/count signals may be passed to the module as either 5 V (RS422 compatible) or 24 V inputs.
In the counter mode, the unit acts as a high speed counter. Counting is started and stopped by activating and deactivating the count gate input. When counting (count gate activated), two output relays operate based on setup parameters passed to the unit prior to activating the count gate.
In the positioning mode, the unit monitors a single-axis motion. This is accomplished by providing quadrature encoder inputs to the ZAE201. When a motion request is received, the unit will control the state of two output relays based on the current position relative to the commanded position. During motion, the state of two relay outputs are maintained such that speed can be controlled as the target position is approached. The specific operation of these relays is determined by setup parameters passed to the ZAE 201. Direction of motion and absolute speed are determined by other devices controlled through user logic.

## LED Indicator Displays of the ZAE 201 Counter/Positioner Module

## LED Indicators

The ZAE 201 has seven LED indicators displayed on the front panel:

- The green LED opposite terminal screw 1 goes ON to indicate the presence of the 24 V supply voltage
- The amber LED opposite terminal screw 2 may be used as an encoder power monitor if you are using 24 V input signals; if you remove the jumper between terminal screws 1 and 2 and add a wire from the encoder supply, the LED will go ON to indicate a loss of power from the field device. Do not remove the jumper or use this LED with 5 V input signals.
- The green LED opposite terminal screw 12 is the READY LED; its meaning is mode dependent. It goes ON in the positioner mode when the module has been completely parameterized and the reference point trip has been performed. It goes ON in the counter mode when the module has been completely parameterized.
- The amber LED opposite terminal screw 13 is the RUN LED; its meaning is mode dependent. It goes ON in the positioner mode when a motion command is being executed. It goes ON in the counter mode when the module is parameterized and the counter gate is open.
- The red LED opposite terminal screw 14 goes ON to indicate an FKE input active condition.
- The two red LEDs opposite terminal screws 16 and 18 indicate the current condition of relays 1 and 2 , respectively. When an LED is ON, its respective relay is closed; when an LED is OFF, its relay is open.


## Choosing Operating Mode and Input Voltage Level for the ZAE 201 Counter/ Positioner Module

Switch Location and Settings

The choices of operating mode and input voltage are set via DIP switches on the back of the module. The module can operate in only one mode and at only one input voltage at a time.


## Operating States of the ZAE 201 Counter/Positioner Module

Operating States

After a ZAE 201 module has been installed, its two output relays must be parameterized for counting or positioning functions. When the Compact-984 Controller is started and begins solving user logic, the ZAE 201 comes up in an initialized but nonfunctional state called NET IN. In order to bring the module into a READY state where it can function, information must be sent to the module identifying how the two relays are to be used and how the FKE input is to be interpreted. The process of sending this information to the module is called parameterization, and the specific parameters are dependent upon the module's operating mode.
At the beginning of each scan, the ZAE 201 places the latest status and counter or positioning data in its input data block. The controller uses this information to determine the next command for the module. Commands are stated in the output data block. If no new command is appropriate based on the current information in the input data block, the command byte in the output data block is set to 0 .
The ZAE 201's maximum count cannot exceed 8,388,607.
Typically, the command register in the output data block should be cleared at the start of a scan, allowing the user logic to define a new command as required. The command is passed to the module at the end-of-scan. Commands may be given only when the ZAE 201 is not busy, and a command must be consistent with the current state of the module. If either of these conditions is not met, an error will be returned in the input data block.

The ZAE 201 can be reset to a NET IN state at any time. New information can then be passed to the module, thereby redefining the operating parameters before returning to the READY state.

## Representing the ZAE 201 Data Blocks in the I/O Map

$$
\begin{array}{ll}
\text { Overview } & \text { The ZAE } 201 \text { is described in the Compact- } 984 \text { I/O Map as a three-register } \\
\text { bidirectional module. Three consecutive } 3 \mathbf{x} \text { input registers are used to store the } \\
\text { three words in the input data block, and three consecutive } 4 \mathbf{x} \text { output registers are } \\
\text { used to store the three words in the output data block. }
\end{array}
$$

## Format of the Input Data Block

The first word in the ( $\mathbf{3 x}$ ) input data block contains input data necessary for user logic to efficiently control the ZAE 201; it comprises three parts:

- A one-bit module busy flag
- A set of seven error condition bits
- A set of eight mode-specific module status bits

The following diagram shows the first word in the input data block.
First Word in the Data Input Block


* indicates that the bit value may be either 1 or 0 when the module is in this state.

The second and third words in the input data block contain the latest count or position value, depending on the operating mode of the module. The second word contains the high order position or count, and the third word contains the low order.

The following is an explanation of bits $10 \ldots 13$ in the above illustration:

Bit 10	In position mode, a 1 in this bit indicates   whether the motion is within the specified   target range
Bit 11	The state of relay 2 at terminal 18
Bit 12	The state of relay 1 at terminal 16
Bit 13	The state of FKE input at terminal 14

Note: When in position mode the counts are 4 times those counts when in counter mode.

Format of the Output Data Block

The first $4 \mathbf{x}$ word in the output data block passes commands to the ZAE 201 module. It uses its low byte (bits $9 \ldots 16$ ) to indicate the command type; the high byte (bits $1 \ldots 8$ ) is not used. The command types and their output data block implementations are mode dependent.
The following table is an output data block representation of counter/positioner commands:

Operating   Mode	Command	Hex   Value	Low Byte Bit Values
Counter	parameterize	01	00000001
	reset	02	00000010
	clear current count	03	00000011
	parameterize	01	00000001
	reset	02	00000010
	run reference	04	00000100
	run reference +	05	00000101
	go to target	06	00000110

These commands initiate a process to be carried out by the module and causes the module to change state, sometimes permanently and sometimes temporarily.
The second and third words in the output data block are command dependent. Sometimes they are used to pass needed information to the ZAE 201; other times they may not be used at all. Some commands require more information than can be stored in two words, and in these cases the second word is used as a pointer into state RAM where the requisite number of registers is accessed.

## 47.2 <br> Using the ZAE 201 Counter/Positioner Module as a High-Speed Counter

## At a Glance

Purpose

What's in this Section?

This section provides an overview of the using the ZAE 201 Counter/Positioner Module as a high-speed counter.

This section contains the following topics:

Topic	Page
Field Wiring the ZAE 201 for Counting Applications	628
Switch Settings for Using the ZAE 201 as a High-Speed Counter	631
Overview of ZAE 201 Counter Mode Commands and States	632
ZAE 201Counter Mode Commands	633
Example: Using the ZAE 201 as a High-Speed Counter	636

## Field Wiring the ZAE 201 for Counting Applications

Field Wiring for Counting Applications

Wiring for Counting with 5 V Inputs

The ZAE 201 module can be field wired for counting applications in three different ways-for 5 V inputs and for 24 V inputs with or without the power monitor jumpered between terminals 1 and 2 .

The ZAE 201 can be field wired for counting with 5 V inputs as shown below.


Wiring for Counting with 24 V Inputs

The ZAE 201 can be field wired for counting with 24 V inputs, with or without the power monitor jumpered between terminals 1 and 2 as shown below.


Facts About Field Wiring for Counting Applications

Note: When the jumper between terminals 1 and 2 is removed and when both terminals are field wired, as they are in panel (a) of the previous figure, the amber LED opposite terminal 2 can be used as a power monitor for 24 V input signals. In all other cases, the jumper should be left installed, thus preventing the LED from turning on.

For 24 V operations, a pulse source for the count is field wired to terminal screw 3. For 5 V operations, a differential input is required; pulse source and pulse source must be field wired to terminal screws 3 and 4, respectively. This source is a series of pulses generated by the events being counted.
The counter gate is field wired to terminal screw 14. This gate is used to control the counting operation. When the module is in the READY state and the count gate goes active, the current count held in the data input block is set to 0 and the module starts accumulating a new count.
The two relays that will receive your counter control logic are wired at terminal screws 16 and 18 . Counter control logic is very application specific. For example, relay 1 at terminal screw 16 might be connected to an indicator light that is programmed to turn ON when a specified count is reached; at the same time, relay 2 at terminal screw 18 might be used to modify some aspect of the operation being counted when some other count is reached.

## Switch Settings for Using the ZAE 201 as a High-Speed Counter

Procedure for Setting Switches

To set a ZAE 201 module up as a high speed counter:

Step	Action
1	Place DIP switch B2 on the back of the module in the left (L) position.
2	Use DIP switch B1 to specify the desired input voltage at the count pulse inputs.
3	Use DIP switch B3 to specify whether the counter gate activity will be HIGH or   LOW.

## Overview of ZAE 201 Counter Mode Commands and States

Parameterization
When the ZAE 201 has been installed as a counter module and the Compact-984 Controller has been powered up, the ZAE 201 comes up in a NET IN state. In the NET IN state, the module is able to accumulate pulse counts and store current count information in the second and third word of the input data block. The ZAE 201 must be given a set of counter mode parameters before the count gate and relays can operate.
Two parameters-P1 and P2-must be passed to the module. These two parameters are the count values at which relay 1 and relay 2 , respectively, are to be either opened or closed. A third bit of information must also be passed to the module defining how the relays are to operate when the count is equal to P 1 or P 2 .

READY and RUN States

RESET

Single Count and Multiple Count Operations

Once the module has been parameterized, it goes into a READY state, where it is prepared for normal counting functionality controlled by the counter gate input. When the counter gate is active, the module is in the RUN state where it proceeds with its counting operation.
When the counter gate is not active, the module switches to the READY state where it stops counting and maintains the count that it has accumulated. Activating and deactivating the counter gate switches the module from READY to RUN and back.

If you need to change the operating parameters without stopping the controller, you can put the module back into a NET IN state at any time by issuing a RESET command.

The relays can operate in either single or multiple count operations.An example of a single count operation might be using the P1 parameter is set to define when relay 1 opens-when the specified count is reached, the relay opens and the count continues.

An example of a multiple count operation might be a relay scheduled to open at a defined count and close when the count reaches 1.25 times the defined count. This operation will continue to open at every multiple of the defined parameter and close at every quarter multiple of that parameter.

## ZAE 201Counter Mode Commands

## Counter Mode Commands

## Counter Mode

 Parameterize CommandThere are three commands that can be used in the counter mode-parameterize, clear current count, and reset. These commands are implemented in the three-word output data block specified in the I/O Map for the ZAE 201.As described in the following table, not all commands are acceptable at all times to the module:

State	parameterize	clear current   counter	reset
NET IN	allowed	allowed	allowed
READY	not allowed	allowed*	allowed
RUN	not allowed	not allowed	allowed

* Allowed, but has no effect if the module has entered RUN state since being parameterized.

If a command is issued during a state that does not allow that command, an error is reported in the first word of the input data block.

The parameterize command implements the first two words in the output data block.

## Output Data Block Format: parameterize Command in Counter Mode

First Word in the Output Data Block


Second Word in the Output Data Block


Third Word in the Output Data Block Not Used
The second word contains an index into a table of five $4 \mathbf{x}$ registers in the controller's state RAM. These five registers contain the information necessary to parameterize the module.

The first register in the $4 \mathbf{x}$ table contains information that defines how the relays will be set and how they will react when the count is met:
The following diagram illustrates how the relays will be set and how they will react when the count is met.

$0=$ Relay 1 responds only once
1 = Relay 1 reset after 0.25 P 1 of the pulses

Any values that might appear in bits $1 \ldots 12$ of the register are ignored.
The second and third registers in the $4 \mathbf{x}$ table contain a hexadecimal representation of P1, the count value controlling relay 1 . The value of P1 $<8,388,607$. The second register contains the high order part of the hex value, and the third register contains the low order part of the hex value.

The fourth and fifth registers in the $4 \mathbf{x}$ table contain a hexadecimal representation of P2, the count value controlling relay 2. The value of P2 $<8,388,607$. The fourth register contains the high order part of the hex value, and the fifth register contains the low order part of the hex value.

If an error occurs during the issue of the parameterize command, the appropriate code will be returned in the first word of the input data block.

## Counter Mode reset Command

## Counter Mode clear current count Command

The reset command implements only the first word in the output data block.

## Output Data Block Format: reset Command in Counter mode

First Word in the Output Data Block


Second Word in the Output Data Block Not Used
There are no errors associated with this command. If the module is in a RUN or READY state when the reset command is issued, the module will be put into a NET IN state. If the module is already in NET IN when the command is issued, nothing will happen.

The clear current count command implements only the first word in the output data block, as shown in the graphic below.

## Output Data Block Format: clear current count Command in Counter Mode

First Word in the Output Data Block


Second and Third Words in the Output Data Block Not Used
The only potential error associated with this command will be flagged if you issue it while the module is in RUN mode.

## Example: Using the ZAE 201 as a High-Speed Counter

## Overview This system carries piece parts along a motor-driven conveyor line. The line continues to a diverting mechanism that sends parts to either the right ( R ) or left ( L ) into separate bins. The ZAE 201 Counter will enable the system to be controlled such that the gate will switch positions after every 4,000 pieces. <br> The following diagram illustrates a conveyer system application example.



Counter Example DIP Switch Settings

Set the DIP switches on the back of the module for COUNTER mode, 5 V input voltage, and LOW activity on the count gate.

The following diagram illustrates this procedure.


Counter Example Traffic Cop Settings

Traffic cop the drop to support the system with the ZAE 201 high speed counter, a DAP 216 discrete output module, and a DEP 216 discrete input module:


Counter Example The following coils will be implemented in the example counting operation: Coil Use

Usage	Coil	Function
External (DAP 216)	00001	Control coil for gate position A (at DAP 216   terminal screw 3)
	00002	Control coil for gate position B (at DAP 216   terminal screw 4)
	00007	Control coil for the count gate, the FKE   input (at terminal screw 14)
Internal	00017	Logic solve coil-when ON, ladder logic is   being solved
External (DEP 216)	10009	State of Relay 1 output from ZAE 201
External (DEP 216)	10011	State of Relay 2 output from ZAE 201

Counter Example Parameterization

Go to the reference editor by pressing <ALT><F2>, and edit register values to parameterize the ZAE 201 high speed counter:


Set register 40002 to a decimal value of 50 ; this indicates a pointer to a block of five $4 \mathbf{x}$ registers starting at 40050. (Do not set values in register 40001 manually-this will be done by the user logic.)
The values you set in the table registers indicate:

- Relays 1 and 2 are normally open and provide one-shot responses, since the four least significant bits in register 40050 are all set to 0
- The high order word value for relay 1 , as expressed in register 40051, is 0
- The low order word value for relay 1, as expressed in register 40052 , is 4,000 (FAO in hex)
- The high order word value for relay 2, as expressed in register 40053, is 0
- The low order word value for relay 2, as expressed in register 40054, is 8,000 (1F40 in hex)

These parameterizing values will cause Relays 1 and 2 to close at the count values of 4000 and 8000 , respectively.

Counter Example Field Wiring Diagram

The discrete modules will be used to control the mechanics of the switching gate. Field wire the three A120 I/O modules like this:


### 47.3 Using the ZAE 201 Counter/Positioner Module as a Positioning Controller

## At a Glance


#### Abstract

Purpose This section provides an overview of the using the ZAE 201 Counter/Positioner Module as a positioning controller.

The ZAE 201 does not control speed, but provides relay outputs that indicate when speed should be changed. The actual control of speed must be provided by the user (ladder or hardware) logic-the module itself does not control the speed. Similarly, the ZAE 201 does not control direction; this is also a function of user-defined logic (ladder or hardware).


What's in this Section?

This section contains the following topics:

Topic	Page
Field Wiring for ZAE 201 Positioning Applications	641
Switch Settings for Using the ZAE 201 as a Positioning Controller	646
Overview of ZAE 201 Positioning Mode Commands and States	647
The ZAE 201 Positioning Mode Commands	648
Example: Using the ZAE 201 Module as a Positioner	654

## Field Wiring for ZAE 201 Positioning Applications

Field Wiring for Positioning
Applications

The ZAE 201 module can be field wired for positioning applications in three different ways-for 24 V inputs with or without the power monitor jumpered between terminals 1 and 2, and for 5 V inputs.

Note: When the jumper between terminals 1 and 2 is removed and when both terminals are field wired, as they are in Figure 18 (a), the amber LED opposite terminal 2 can be used as a power monitor for 24 V input signals. In all other cases, the jumper should be left installed.

Wiring a ZAE 201 Module for Positioning with 5 V Inputs

The ZAE 201 can be field wired for positioning applications with 5 V inputs as shown here.


The direction of motion and speed are user defined. The ZAE 201 provides relay outputs that indicate when speed should be changed.

Wiring a ZAE 201 The ZAE 201 can be field wired for positioning applications with monitoring as Module for shown in (a), and without (b).
Positioning with 24 V Inputs

(a)


## Position Control

For 24 V operations, a ZAE 201 positioning module requires three input signals from an incremental encoder to maintain absolute position-two quadrature pulse inputs connected at terminal screws 3 and 5 provide position and direction, and a third signal connected at terminal screw 7 provides a single pulse on every rotation of the encoder.
For 5 V operations, differential inputs are required; a ZAE 201 positioning module must be wired at six terminal screws:

- Quad pulse 1 and quad pulse 1 at terminal screws 3 and 4, respectively
- Quad pulse 2 and quad pulse 2 at terminal screws 5 and 6, respectively
- The 0 reference and 0 reference at terminal screws 7 and 8 , respectively

The pulse signal combined with the reference trip input at terminal screw 14 define 0 for the linear travel route being controlled by the module.
The reference trip input is derived from the output of some type of proximity sensor placed at a position defined as 0 . On command, the object under control is passed by the proximity switch. By logically ANDing the rotational pulse from the encoder with the signal from the proximity switch, you define 0 and maintain the position value of 0 within the module.

Position control is handled by user-defined discrete logic that controls a drive motor based on information provided by the Compact-984 Controller. Relays 1 and 2 on the ZAE 201 module control motor speed in the following manner, depending on whether the parameterize command has been set for overlapping mode or alternating mode pulse reception:

## Overlapping Mode

- Both relays ON - fast speed
- Relay 1 OFF and relay 2 ON - slow speed
- Both relays OFF - stop drive motor


## Alternating Mode

- Relay 1 ON and relay 2 OFF - fast speed
- Relay 1 OFF and relay 2 ON - slow speed
- Both relays OFF - stop drive motor

Motor direction must be controlled by other logic, typically by a discrete output module or ladder logic that drives a D/A converter-e.g., a DAU 202.

## Switch Settings for Using the ZAE 201 as a Positioning Controller

Switch Settings To set a ZAE 201 module up as a one-axis positioning controller, place DIP switch B2 on the back of the module in the right (R) position, use DIP switch B1 to specify the desired input voltage at the encoder inputs, and use DIP switch B3 to specify whether the reference trip activity will be HIGH or LOW.

The ZAE 201's maximum allowable positions are limited to a range between $8,388,607$ and $+8,388,607$.

Note: The ZAE 201 does not control speed, but provides relay outputs that indicate when speed should be changed. The actual control of speed must be provided by the user (ladder or hardware) logic-the module itself does not control the speed. Similarly, the ZAE 201 does not control direction; this is also a function of userdefined logic (ladder or hardware).

## Overview of ZAE 201 Positioning Mode Commands and States

Parameterization When the ZAE 201 has been installed as a positioning module and the Compact984 Controller has been powered up, the ZAE 201 comes up in a NET IN state. In the NET IN state, the module is unable to conduct any position control operations. It must be given a set of positioner mode parameters before it becomes a functioning module.

The process involves the setting of three positioning parameters-P1, P2, and P3which describe how the two relays will manage motor speed as the target position is approached, These parameters are unsigned numbers that refer to three different distances from the target position.
For example, in overlapping mode, P1, P2, and P3 are values that must be defined based on the dynamics of the operation being controlled. When the distance from the target position reaches the value defined as P1, relay 1 is opened and the drive motor speed begins to be reduced. When the distance from the target position reaches the value defined as P2, relay 2 is opened and the drive motor is turned OFF; when the motor is turned OFF, the operation coasts to a stop. P3 defines an acceptable region on either side of the target position where you plan to stop the system.

Two additional bits of information must be passed to the module during the parameterization process. The first specifies the relay operation as a function of P1 and P2; the other specifies the speed at which the reference point will be approached.


#### Abstract

Running a Reference Point

After the ZAE 201 has been parameterized for positioning mode, the module is not yet able to perform motion control until it has undergone a procedure called running a reference point. This procedure defines the 0 -point on the axis of travel. It requires the issuing of the run reference point command in the output data block in order to drive the system toward the 0-position (defined by a proximity sensor) and set the position value in the module to 0 when that point is reached.


The direction of motion is totally user-controlled.
The READY State After you have completed running a reference point, the ZAE 201 module enters the READY state for positioning operations. At this point, motion control can be enacted by simply requesting that the module drive the system to a particular coordinate.

RESET
If you need to change the operating parameters, you can put the module back into a NET IN state at any time by issuing a reset command.

## The ZAE 201 Positioning Mode Commands

## Overview

## Positioning Mode parameterize Command

As shown in the following table, there are five commands that can be used in the positioning mode-parameterize, reset, run reference point, run reference point + , and go to target. These commands are implemented in the three-word output data block specified in the I/O Map for the ZAE 201. Before ordering encoders, ensure they comply with the A, B, and Z pulses shown in the Specifications section.

Not all commands are acceptable at all times to the module:
The following table summarizes command and state compatibilities in positioner mode.

State	parameterize	reset	run ref	run ref +	go to target
NET IN	allowed	allowed	not allowed	not allowed	not allowed
PARAM	not allowed	allowed	allowed	not allowed	not allowed
READY	not allowed	allowed	not allowed	allowed	allowed
RUN FAST	not allowed	allowed *	not allowed	not allowed	not allowed
RUN SLOW	not allowed	allowed* *	not allowed	not allowed	not allowed
RUN HUNT	not allowed	allowed* *	not allowed	not allowed	not allowed

* Allowed but can cause current motion to stop by opening both relays.

If a command is issued during a state that does not allow that command, an error is reported in the first word of the input data block.

The parameterize command implements the first two words in the output data block:

Output Data Block Format: parameterize Command in Positioner Mode
First Word in the Output Data Block


Second Word in the Output Data Block


Third Word in the Output Data Block Not Used
The second word contains an index into a table of seven $4 \mathbf{x}$ registers in the controller's state RAM. These seven registers contain the information necessary to parameterize the module.

The first register in the $4 \mathbf{x}$ table contains information that defines the operation of the relays during motion to a target position and the speed at which a run reference point is executed.
The following diagram illustrates this procedure.


Any values that might appear in bits $1 \ldots 14$ of the register are ignored.
The second and third registers in the $4 \mathbf{x}$ table contain a hexadecimal number that defines P1-the distance from the target position at which the motor speed should slow down. The value of P1<8,288,607. The second register contains the high order part of the hex value; the third register contains the low order part of the hex value.

The fourth and fifth registers in the $4 \mathbf{x}$ table contain a hexadecimal number that defines P2-the distance from the target position at which the motor should turn OFF. The value of P2 < 8,288,606. The fourth register contains the high order part of the hex value; the fifth register contains the low order part of the hex value.

The sixth and seventh registers in the $4 \mathbf{x}$ table contain a hexadecimal number that defines P3-the distance from the target position that is deemed within acceptable tolerance of the desired position. The value of P3 $<8,288,605$. The sixth register contains the high order part of the hex value; the seventh register contains the low order part of the hex value.

## Positioning Mode Motion Completion

CAUTION
Possible need to reset.
If the motion never achieves the target tolerance, the ZAE 201 will never report the
motion completed-no further motion commands can be given without resetting
the module.
Failure to follow this instruction can result in injury or equipment damage.

The reset command implements only the first word in the output data block:

## Output Data Block Format: reset Command in Positioner Mode

First Word in the Output Data Block


There are no errors associated with this command. If the module is in a RUN or READY state when the reset command is issued, the module will be put into a NET IN state. If the module is already in NET IN when the command is issued, nothing will happen.

Note: The reset can be used as an emergency stop for any motion.

## Positioning <br> Mode run reference point Command

Positioning Mode go to target Command

The run reference point command is used to define a 0-point along the range of motion available to the system being controlled. The system is driven in the direction of a 0-point that has been predefined by a proximity sensor before issuing the command. When the system reaches the 0-point, the module defines its 0 reference location as this point.

The run reference point command implements only the first word in the output data block:

## Output Data Block Format: run reference point Command in Positioner Mode

First Word in the Output Data Block


Second and Third Words in the Output Data Block Not Used
This command must be issued as part of the parameterization process and is valid only when the module is in a parameterized but not READY state.

The go to target command is the major motion command used in the positioning mode; it implements all three words in the output data block:
Output Data Block Format: go to target Command in Positioner Mode


When you issue the go to target command, you tell the ZAE 201 module to drive the system under control to a position specified by a hexadecimal number entered in the second and third words of the output data block. The value of that hex number is in the range $-8,388,608 \ldots+8,388,607$. The direction of motion may be positive or negative; anticipated direction must be specified in user logic and transmitted to the position control logic during the same cycle that the go to target command is issued. When a go to target command is received, bit 1 in the first word of the input data block is set to 1 ; the bit remains set until the target is reached and the READY state is reached. No further motion commands are permitted while the busy bit is set.

The go to target command is valid only while the ZAE 201 is in the READY state.

## Positioning Mode run reference point + Command

The run reference point + command implements all three words in the output data block:

## Output Data Block Format: run reference point + Command in Positioner Mode

First Word in the Output Data Block


Second Word in the Output Data Block


Third Word in the Output Data Block

				signtd hex po\$ition	value (Iov order)			

When you issue the run reference point + command, you tell the ZAE 201 module to drive the system under control in a positive direction to a position specified by a hexadecimal number entered in the second and third words of the output data block. The value of that hex number is in the range $-8,388,608 \ldots+8,388,607$. In order for this command to be satisfied, the system under control must be driven through the 0 reference point.

The run reference point + command is designed specifically for systems that continually return to the 0 reference point when driven in a positive direction-e.g., a continuous belt-driven machine. In this type of system, where all positions are defined as positive offsets of the predefined 0-point, the command may be used as an alternative to the go to target command for sending the system a target. If, for example, you want to move a system currently located at position 10,000 to target position 5,000 , you may proceed to the target in either the positive or negative direction:

- To proceed in the negative direction, issue the go to target command to target position 5,000:

- To proceed in the positive direction, issue the run reference point + command to target position 5,000:


In the second case, the run reference point + command moves the system forward to the 0 reference point, resets the count to 0 , then continues system movement positively to target position 5,000 .
When a run reference point + command is received, bit 1 in the first word of the input data block is set to 1 ; the bit remains set until the target is reached and the READY state is reached. No further motion commands are permitted while the busy bit is set.
The run reference point + command is valid only while the ZAE 201 is in the READY state.

## Example: Using the ZAE 201 Module as a Positioner

## Positioning Example

Positioner Example DIP Switch Settings

The ZAE 201 module is used to control horizontal positioning in the following example. The system is a process line where printed circuit boards are dipped into a series of four tanks. In the positioning mode, the ZAE 201 carry the PCBs along the process line, position them over each of the four stations, and move them to the unload position at the end of the line. The example treats only the horizontal movement portion of the application; it does not treat vertical dipping motions.


Set the DIP switches on the back of the module for POSITION mode, 5 Vdc input voltage, and HIGH activity on the count gate:


Positioner
Example Traffic Cop Settings

Traffic cop the drop to support the system with the ZAE 201 positioning module with a DAU 202 analog output module and a DAP 22024 Vdc combo I/O module:


## Positioner

 Example Field Wiring DiagramField wire the two A120 I/O modules like this:


The following ladder logic program automatically parameterizes the module upon power-up and then repeatedly directs the motion:

- Relays 1 and 2 are normally open and provide one-shot responses, since the four least significant bits in register 40120 are all set to 0
- The high order byte value for P1-the distance from the target location at which the motor drive will begin to slow the process-is expressed in register 40121 as 0
- The low order byte value for P1 is expressed in register 40122 as 1,000
- The high order byte value for P2-the distance from the target location at which the motor drive will stop-is expressed in register 40123 as 0
- The low order byte value for P2 is expressed in register 40124 as 500
- The high order byte value for P3-the acceptable distance from the target location-is expressed in register 40125 as 0
- The low order byte value for P3 is expressed in register 40126 as 250


## Positioning <br> Example State <br> RAM Values

The following values, initialized in State RAM, will enable the positioning example to operate using the logic, traffic cop, and module connections as described in the following tables.

## Data Blocks

## Parameterize Data Blocks

40120	0	Parameterize Data
40121	0	P1 Value
40122	1000 Decimal	
40123	0	P2 Value
40124	500 Decimal	
40125	0	P3 Value
40126	250 Decimal	

Motion Direction Data Block

40130	32	These registers, when moved to call group 00001-00016, set Coil 10 or 11, specifying the direction of motion.
40131	32	
40132	32	
40133	32	
40134	32	
40135	64	
40099	0	Pointer to table of direction bits
40140	0	Pointer to table of motion commands
40100	1	Command data for parameterized command, pointing to a table starting with register 40120. This command will be active at the end of the first scan.
40101	120	
40102	0	


Motor Speed,   Direction, Motion   Commands	Motor Speed And Direction Values		
	40160	$4096(+10 \mathrm{~V})$	One of these values is moved to register 40150,   which is I/O mapped to the DAU 202. The   output of the DAU 202 will control the motor   speed and direction. NOTE: The specific   values used here are application-dependent.
40161	$3072(+5 \mathrm{~V})$		
40162	20480		
40163	$1024(-5 \mathrm{~V})$		
40164	$0(-10 \mathrm{~V})$		

## Motion Command Table

40200	4	Run reference point command data
40201	0	
40202	0	
40203	6	Move to position 10,000 command data
40204	0	
40205	2710 Hex	
40206		
40207	0	20,000
40208	4E20 Hex	
40209	6	
$40210$	$0$	30,000
40211	7530 Hex	
40212	6	
40213	0	40,000
40214	9C40 Hex	
40215	6	
40216	0	0
40217	0	

Positioning
Example
Network
Diagrams

In the example shown here, the HOME proximity switch is simulated by disabling Coil 00001 and momentarily forcing it ON and then OFF, while the Run Reference Point command is being executed. This toggles the FKE input to the ZAE 201 via the DAP 220.

Networks 1 and 2 The following diagram describes Networks 1 and 2.
NETWORK 1


Network 1 monitors the busy bit in status Register 30001. When the bit is on, a motion is in progress. A negative transition indicates the end of a motion; a positive transition indicates a new motion has started. If a new motion has just started, the command register is cleared. If the motion command has just completed, a check is made to see if the end of the motion table has been reached ( $40099=6$ ); if so, the pointer to the motion table is reset to 1 .

## NETWORK 2



Network 2 delays the positioning movement by 5 s after each new position has been reached. Once the timer has timed out, the new position values are moved into $40100 \ldots 40102$.


Also in this network, position pointer 40099 and direction pointer 40140 are incremented by 1 as part of the TBLK function block.

Networks 3 and 4 The following diagram describes Networks 3 and 4.
NETWORK 3

30001
00033
NLKM   1
Network 3 controls speed in the positive direction by moving   the value of 30001 to coils 33 ... 49. This is done to monitor   bits 10 and 11 of the status word (R1 and R2), which are

The BLKM of registers 40162 ... 40150 assumes no motion will occur. Subsequent logic sets up the appropriate speed.

## NETWORK 4



Network 4 is similar to Network 3, but controls speed in the negative direction.

## 47.4 <br> Specifications of the ZAE 201 Counter/Positioner Module

## Specifications of the ZAE 201 Counter/Positioner Module

## Purpose The purpose of this section is to list technical specifications of the module.

ZAE 201 Counter/ Positioner Specifications

Module Topology

Number of Relay Outputs	2
Operating Modes	Switch-selectable   counter/positioner

## Power Supplies

External Power Source (for all operating modes)	$24 \mathrm{Vdc}, 30 \mathrm{~mA}$
Internal Power Source from I/O Bus	$5 \mathrm{~V}, 100 \mathrm{~mA}$   maximum

## Electrical Characteristics

Working Voltage Range of Relays		$24 . . .60 \mathrm{Vdc}$
		$24 . .250 \mathrm{Vac}$
Contact Current (maximum)	Load Currents @ 230 Vac	2 A continuous resistive
		4 A instantaneous resistive
		1 A continuous (Cos $\Phi=0.5$ )
	Load Currents @ 24 Vdc	2 A continuous resistive
		4 A instantaneous resistive
		$\begin{aligned} & 1 \mathrm{~A} \text { continuous (L/R* } \\ & =30 \mathrm{~ms}) \end{aligned}$
Wetting Current		5 mA (relay outs)
Contact Delay Time		$\sim 10 \mathrm{~ms}$


Protective Circuitry		$68 \Omega+15 \mathrm{nF}$ in parallel with the contact   Consumes $\sim 1 \mathrm{~mA}$
Maximum Wire Length	from 24 V Pulse	20 m
	Generator	65 ft
	from 5 V Pulse Generator	50 m
		163 ft
* L = Load Inductance in H R = Load Resistance in $\Omega$	$\mathrm{R}=$ Load Resistance in $\Omega$	

Input Characteristics

5 V Input Selection	Differential RS-422	12 V peak-to-peak maximum
		400 mV peak-to-peak minimum
24 V Input Selection	for 1 signal	$12 . .30 \mathrm{~V}$
	for 0 signal	-2 ... +5 V
Maximum Count Frequency	for 5 V input	500 kHz
	for 24 V input	50 kHz
PNP Encoder Quadrature type		Two-track plus marker signal
Count Gate/Reference Trip		$1=12 \mathrm{Vdc}$ (min)
		$0=5 \mathrm{Vdc}$ (max)
Encoder Pulse Alignment		See diagram below.
Duration		> 10 ms
Rise Time		N/A

## Relay Contact Service Life

Mechanical Switching Cycles		20,000,000
Electric Switching Cycles (Resistive Load)	@ 230 Vac/0.2 A	10,000,000
	@ 230 Vac/0.5 A	7,000,000
	@ $30 \mathrm{Vdc} / 2 \mathrm{~A}$, clamping diode	8,000,000 (typical)
	@ 60 Vdc/1 A with clamping diode	1,000,000 typical
		3,000,000 maximum
		3000 cycles/hr maximum
Electric Switching Cycles (Inductive Load, $\operatorname{Cos} \Phi=0.5$ )	@ $230 \mathrm{Vac} / 0.5 \mathrm{~A}$	5,000,000

## I/O Map

Register $3 \mathrm{x} / 4 \mathrm{x}$	3 in/3 out

Dimensions

W $\times \mathrm{H} \times \mathrm{D}$	$40.3 \times 145 \mathrm{x}$   117.5 mm
	$1.6 \times 5.6 \times 4.5 \mathrm{in}$
Weight	300 g
	0.7 lb

## Agency Approvals

VDE 0160; UL 508; CSA 22.2 No.142; and FM Class I, Div 2 Standards

Pulse Alignment of Encoders Used with the ZAE 201 Module

Encoders used with the ZAE 201 module should be ordered with the alignment of A, $B$ and $Z$ pulses as shown below.


Encoders used with the ZAE-201 module should be ordered with the alignment of $A, B+Z$ pulses as shown above.

# Overview of the ZAE 204 HighSpeed Counter Module 

## 48

## At a Glance

Purpose The purpose of this chapter is to describe the ZAE 204 High-Speed Counter Module.

A WARNING
Compatibility
The ZAE 204 module will only operate properly when used with an A984, E984, or
Micro 512/612 controller.
Failure to follow this instruction can result in death, serious injury, or
equipment damage.

This chapter contains the following topics:

Topic	Page
What is the ZAE 204 High-Speed Counter Module?	666
Operating and Display Elements of the ZAE 204 High-Speed Counter Module	668
Configuration of the ZAE 204 High-Speed Counter Module	669
Example Field Connections and Signal Addresses for the ZAE 204 Module	672
Output Register Formats of the ZAE 204 Module	676
Input Register Formats of the ZAE 204 Module	681
Operation of the ZAE 204 Module	684
Specifications of the ZAE 204 High-Speed Counting Module	686

## What is the ZAE 204 High-Speed Counter Module?

## Brief Product Overview

The ZAE 204 is a high speed counter module with the following characteristics:

- Four counter inputs for counting 5 Vdc (TTL) and 24 Vdc pulses; a counting range of 5 decades; and a counting frequency of up to 1 kHz (channel 1 can operate up to 10 kHz )
- Four 24 Vdc count enable inputs
- Four 24 Vdc semiconductor output switches, 0.5 A each, with short circuit/ overload protection and hardware reset

Power required by the module is:

- 5 Vdc via the internal I/O bus
- 24 Vdc external supply for 24 V counting inputs, outputs, and enable inputs

The ZAE 204 can be installed in any slot in the A120 subracks (DTA 200, 201, and 202). The module has bus contacts at the rear and field connections on the front. The blank label, which fits in the module cover, can be filled in with relevant information (signal values, etc.) in the spaces provided. Refer to ZAE 204 Diagram, p. 667 below.

The ZAE 204 is made up of 4 independent counters for the following modes:

- Event counter
- Repeat counter
- Differential counter

The above operating modes and the parameters required for them are preset by the user program. See Operation of the ZAE 204 Module, p. 684 for a description of these modes.

Any output that is overloaded or short-circuited is switched OFF, and is indicated by the amber fault LED (see next section (see Operating and Display Elements of the ZAE 204 High-Speed Counter Module, p. 668)). Correction is made by use of the RESET button as shown in the front view and label diagram below.



## Operating and Display Elements of the ZAE 204 High-Speed Counter Module

ZAE 204 LEDs The ZAE 204 has eleven LEDs on the front of the module. From top to bottom, they are:

Color	Type	Function
Green	Power	External 24 Vdc-when lit, power ON; when off, power OFF
Green	Ready	When lit, indicates firmware initialization is complete and   module is ready for service; when off, indicates start-up   functions are not complete and module is not yet ready.   Note: The PLC must be running for this LED to illuminate.
Amber	Fault	Indicates the presence of an overload or short-circuit at one or   several output points. When lit, indicates an overload or short   circuit; when off, no faults detected.
Red	Output $1 \ldots 4$	Located opposite terminal screws $14 \ldots 17$. When lit, these   LEDs indicate that the outputs are ON.
Red	Gate 1 ...4	Located opposite terminal screws $18 \ldots 21$. When lit, these   LEDs indicate that the enable inputs (function gate) have a high   signal level voltage applied to them.

The RESET button is used to restore the operation of an output switch after the overload condition has been removed.

## Configuration of the ZAE 204 High-Speed Counter Module

ZAE 204
Configuration Overview

The ZAE2 04 contains four independent 16-bit 1 kHz counters. In addition, channel 1 can be programmed to accept up to 10 kHz inputs. The ZAE 204 has several modes of operation. It can operate as four independent up or down counters, either one time or repetitively. Alternatively, channels 1 and 2 and/or channels 3 and 4 can operate together as differential counters. In this mode, a single count value is maintained for channel pairs.
For the channel 1, 2 pair, input pulses at the channel 1 field connector cause this count value to increase, and input pulses at channel 2 cause the count value to decrease. The differential count value for the channel 1, 2 pair are returned to the location normally associated with channel 1 . The channel 3,4 pair works in a similar manner.

An output is provided for each channel (pins 14 ... 17) to signal when the accumulated count at a particular channel has reached its programmed target, counted up to or counted down from 0 . An input signal (pins 18 ... 21) is provided for each channel to enable the counting operation. The accumulation of counts on any channel can be controlled through the state of the enable input to the appropriate pin.

## ZAE 204 Field Side Connections

The module must be traffic copped as six $3 \mathbf{x}$ input registers and one $4 \mathbf{x}$ output register, as shown in the following field side connections diagram.


Module power, 24 Vdc typical
Internally connected to Pin 1 Input pulses for Channel 1 (24 Vdc)

Input pulses for Channel 1 ( 5 Vdc ) Input pulses for Channel 2 ( 24 Vdc ) Input pulses for Channel 2 (5 Vdc) Input pulses for Channel 3 ( 24 Vdc ) Input pulses for Channel 3 (5 Vdc) Input pulses for Channel 4 ( 24 Vdc ) Input pulses for Channel 4 (5 Vdc) Ground Internally connected to Pin 1 Internally connected to Pin 1 Target count signal for Channel 1 (output) Target count signal for Channel 2 (output) Target count signal for Channel 3 (output) Target count signal for Channel 4 (output) Count control (count gate enable) for Channel 1 (input) Count control (court gate enable) for Channel 2 (input) Count control (count gate enable) for Channel 3 (input) Count control (count gate enable) for Channel 4 (input)

Internally connected to Pin 11

ZAE 204 Cabling • Shielded, twisted pair cable (2 or $4 \times 0.5 \mathrm{~mm} /$ channel) should be used. All channels can be connected with a common shielded cable. The maximum cable length is 100 m .

- Connect shield to ground (GND) on one side with a short cable (< 8 in).
- Observe a minimum distance of 20 in between the module and power lines or other sources of electrical disturbance.


## Example Field Connections and Signal Addresses for the ZAE 204 Module

Field Connection
Three examples of ZAE 204 connections are provided:
Diagrams

- 5 V inputs (see 5 V Inputs Connection Example, p. 673);
- 5 V inputs on a noisy system (see 5 V Inputs, High Interference Connection Example, p. 674);
- 24 V inputs (see 24 V Inputs Connection Example, p. 675).

Note: Detailed Compact 984 cabling and installation instructions are found in the 984-A120 Compact Programmable Controllers User Guide (GM-A984-PCS).

5 V Inputs Example connections for 5 V inputs are shown below.

## Connection

 Example

5 V Inputs, High Interference Connection

## Example

Example connections for 5 V inputs, on a system with a high interference level, are shown below.


24 V Inputs Connection Example

Example connections for 24 V inputs are shown below.


## Output Register Formats of the ZAE 204 Module

Overview
The ZAE 204 is traffic copped for set up through a single 4YYYY word (BIN register). The content of this word is interpreted as a pointer to the first of eight $4 \mathbf{x}$ registers that contain the programmable operating parameters for each of the four counter channels.

The format, of the eight words pointed to, appears in the following graphic, which shows the output register format for the ZAE 204 module.

I/O MAP
REGISTER

40 YYY	XXX	DATA $=$ POINTER VALUE	
		MEMOR	DATA
		4 x	COUNTER 1 MODE
		$4 \mathrm{x}+1$	COUNTER 1 TARGET
		$4 \mathrm{x}+2$	COUNTER 2 MODE
		$4 \mathrm{x}=3$	COUNTER 2 TARGET
		$4 \mathrm{x}+4$	COUNTER 3 MODE
		$4 \mathrm{x}+5$	COUNTER 3 TARGET
		$4 \mathrm{x}+6$	COUNTER 4 MODE
		$4 \mathrm{x}+7$	COUNTER 4 TARGET

The following figure shows the bits in the ZAE 204 mode control word and their meanings.

## MODE CONTROL WORD

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

[8] Mode set, must be toggled (set and then reset) to input the mode control word data.
[7] Not used.
[6] If set, requests counting up; otherwise, down counting
[5] Defines the active level of "count achieved
target" signal for the channel associated with this request. If set $=1$, target count output goes low when count is achieved; if set $=0$, target count goes high when count is achieved.
[4] Defines the active level of "count gate" for the channel associated with this request. If set, a high gate input allows counting.
[3] If set, negative edge transitions are counted on the channel associated with this request. N/A for 10 kHz counts

[2] If set, requests operation at 10 kHz (only valid for Channel 1). $\qquad$
[1] If set, requests that the channel associated with this request and the next channel operate in differential mode (only valid for channels 1 and 3 ).
[ 0 ] If set, requests repetitive counting; if $=0$, continuous count. $\qquad$
The target value is used in several ways. When up counting, the target value is the count at which the target value output for a channel will be on. When down counting, the target value is the value from which the counter counts down to zero. See Operating and Display Elements of the ZAE 204 High-Speed Counter Module, p. 668 for a more complete description.

## Caution


#### Abstract

$\triangle$ CAUTION

\section*{Chance of Incorrect Health Status Indication}

Caution:Modicon 984 PLCs assert IORST, the I/O bus reset, when in STOP mode. This signal halts operation of the ZAE 204 internal microprocessor by forcing it to a reset condition. When I/O Mapping as required in STOP mode, the module will be indicated unhealthy by an asterisk in the I/O module display, and the module description will incorrectly read, "B8 ". This does not affect I/O Mapping, which may proceed as usual. When using a STAT block, module health is properly indicated when Executive Prom Combination \#1003 or greater is installed in the 984. Parameters will have to be loaded (or reloaded) after going into RUN from STOP mode, and that $3 \mathbf{x}$ register data will be zeroed when going from STOP to RUN. Refer to the next figure (see ZAE 204 RUN/STOP Mode, p. 679).

Failure to follow this instruction can result in injury or equipment damage.


ZAE 204 RUN/ STOP Mode

To ensure that the ZAE 204 parameters are loaded after the PLC is set to RUN from STOP mode, the ZAE 204 RUN/STOP mode user logic, shown below, may be used.

NETWORK \#1 / SEGMENT \#1


NETWORK \#2 / SEGMENT \#1



#### Abstract

Operation of Networks in the RUN/STOP Mode User Logic Diagram

On the first scan, the timer in Network 1 is set to zero. The next scan starts the timer, set for 100 ms . When it times out, the output comes on and will activate the BLKM through the positive transition contact referenced to Coil 1 . The values of the 8 fixed 40 YYY registers are block moved into 840 ZZZ registers, which is a table pointed to by the contents of the I/O mapped output register. These registers contain the mode and target data for the module. The mode registers in the 40YYY table must have bit 8 set to 1, as required, to load the parameters into the ZAE 204. On the following scan after the BLKM is solved, coil 2 goes OFF. Power is then passed through the negative transitional to the MBIT blocks, which set bit 8 to zero in each mode control register in the 40ZZZ table. When this is done, the module is ready to accept counts from external pulse generators.


## Input Register Formats of the ZAE 204 Module

## Overview

As described in the following table, the module is I/O mapped to input through six $3 \mathbf{x}$ words (BIN registers). The first two of the input words contain global and channelspecific status information. The last four input words contain the count associated with each of the four channels.

I/O Map   Registers	Description
$3 x$	Module status information
$3 \mathbf{x}+1$	Mode-request errors for each channel
$3 \mathbf{x}+2$	Current count for channel 1
$3 \mathbf{x}+3$	Current count for channel 2
$3 \mathbf{x}+4$	Current count for channel 3
$3 \mathbf{x}+5$	Current count for channel 4

The following figure shows the meanings of the bits in the ZAE 204 RUN/STOP first input word..

FIRST INPUT WORD

[7] Signals when Channel 4 counter has reached the target count.
[6] Signals when Channel 3 counter
has reached the target count.
[5] Signals when Channel 2 counter has reached the target count.
[4] Signals when Channel 1 counter has reached the target count
[3] If set, indicates that the count gate input for Channel 4 is $12-30 \mathrm{~V}$.
[2] If set, indicates that the count gate input for Channel 3 is $12-30 \mathrm{~V}$.
[1] If set, indicates that the count gate $\qquad$ input for Channel 2 is $12-30 \mathrm{~V}$.
[0] If set, indicates that the count gate $\qquad$
input for Channel 1 is $12-30 \mathrm{~V}$.
The format for the second input word is:

SECOND INPUT WORD


Each nibble of the second word contains a single digit identifying the type of error found while trying to program the module with the user instruction provided for that channel. The meaning of the error codes is as follows:

Error   Code	Meaning
0	No error
1	Differential and 10 kHz operation requested on channel 1
2	Differential and repetitive mode requested on channels 1 or 3
3	10 kHz operation requested on channels 2,3, or 4
4	Mode change requested on channels 2 or 4 while channels 1 or   3 (respectively) are set to differential operation
5	Differential operation requested on channels 2 or 4
6	An invalid target value has been specified

## Operation of the ZAE 204 Module

Overview

The operation of the ZAE 204 is controlled through the $4 \mathbf{x}$ register output table (see Output Register Formats of the ZAE 204 Module, p. 676. To control the operation of the module through user logic, the logic must be designed to set up the desired operating mode and then toggle the mode change bit (bit 8) in the mode control word for a particular channel for one scan.
If the bit is not cleared after one scan, the driver will continually attempt to change modes and reset the module (and count) based on the selected mode, thus not allowing the module to operate. Having set the desired mode of operation, the actual counting begins when the active level of the count gate for a channel based on bit 4 of the control word is asserted on the input terminal for the channel (pins 18 ... 21).
An LED is associated with each of the count gate terminals (described previously) that will illuminate when the count gate has 24 V applied. If the count gate is deasserted, the counting is temporarily suspended until it is once again asserted.
When a count operation is completed (count equals target or 0 ), the status bit in the first input word for that channel (bits $4 \ldots 7$ ) is set. In addition, the signal on the output pin for the channel (pin $14 \ldots$ 17) is asserted to a level based in the state of bit 5 of the control word for the channel. An LED is associated with the output pin (described previously) that will illuminate. The ZAE 204 will continue to accumulate counts even though the count target has been reached. If this occurs it will be indicated by one of bits $8 \ldots 11$ being set in the first input word depending on the particular channel.

The actual operation of the module depends on the mode of operation chosen. The operating mode is chosen by the state of bits 0 ... 7 of the mode control word. However, all combinations of these bits are not allowed. Invalid combinations are sensed and reported in the second input word. The following describes the operation in each of the allowed modes.

One-time Operation

This is the default operation obtained by clearing all mode bits ( $0 \ldots 7$ ) of the control word. In this mode, the module will count up or down (see bit 6 of the control word) once, and when the target value or 0 is reached, the input status and discrete outputs will reflect this. The module will continue to accumulate counts after this occurs. The counting process can be restarted by deasserting and reasserting the count gate input for the channel in question. In this mode, the maximum target value allowed is 32767.

Repetitive Operation

## Differential Counter

This mode is activated by setting bit 0 of the control word for the channel in question. This mode is similar to one-time operation except that the count process restarts when the target value is reached. The target achieved signal in the status input, the output discrete, and the LED are asserted and remain so for $25 \%$ of the next count cycle, or 20 ms minimum. In this mode, the maximum target value allowed is 32767.

This mode applies to channels 1 and 3 only and is activated by setting bit 1 in the control word. If differential mode is selected for channel 1 , channels 1 and 2 operate together, and the accumulated count value is reported in the channel 1 input counter $(3 \mathbf{x}+2)$. In this mode, the pulses input to the channel 1 input increment the count, while those input to channel 2 decrement the count. This mode is only available to be programmed in channels 1 or 3 . When differential mode is selected for Channel 3 , Channels 3 and 4 operate together.

The accumulated count value is reported in the Channel 3 input counter ( $3 \mathbf{x}+4$ ). Any attempt to use this mode in channels 2 or 4 will result in an error. Additionally, if a mode change to channel 2 or 4 is requested while channels 1 or 3 respectively are set to differential mode, an error will be reported. Selection of up or down counting (bit 6 of the control word) has no effect in this mode. The counting range is from -32767 ... +32768.

10 kHz Count In Channel 1

The default operation of the module is to accept input pulses at a maximum of 1 kHz . For channel 1 only, an option is available to accept up to 10 kHz pulses. This option is chosen by setting bit 2 of the control word for channel 1 to a 1 . Choosing this option for any other channel will result in an error. Differential mode is not allowed. Only the 5 V input can be used, and only negative edge transitions are counted.

Note: If set to one-time operation, the counter associated with channel 1 will not continue to accumulate counts after target is reached.

## Specifications of the ZAE 204 High-Speed Counting Module

ZAE 204 Module Topology

ZAE 204 Power Supplies

The following table describes the module topology.

Number of Counting Inputs	4
Number of 24 Vdc Outputs	4
Number of Enable Inputs	4
Operating Mode	High Speed Counter
Isolation	Opto-coupler on each field point

Power supply details:

External Power Source   Load	24 Vdc	Count Inputs, 25 mA maximum
		Gate Inputs, 30 mA maximum
		Outputs, 1 A maximum
	5 Vdc	Count Inputs, 10 mA maximum
Internal Power Source   Load from I/O bus	maximum	$5 \mathrm{~V}, 100 \mathrm{~mA}$
	typical	75 mA

## ZAE 204 Counter

 InputsCounter input details

Quantity		4 for input pulses with $5 \mathrm{Vdc}(\mathrm{TTL}$ ) or 24 Vdc
Signal Level at 5 V (TTL)	ON signal	$>=2.3 \mathrm{~V}$
	OFF signal	$0 \ldots 1 \mathrm{~V}$
Input Current	$<=2.5 \mathrm{~mA}$ each at 0 V (current sink)	
Signal Level at 24 V   (TTL)	ON signal	$12 \ldots 30 \mathrm{~V}$
	OFF signal	$-2 \ldots+5 \mathrm{~V}$
Input Current (current source)	$<6 \mathrm{~mA}$ each at 30 V	
Minimum 0 Pulse Width	0.35 ms	
Allowable Mark-space Ratio	$65 / 35$ percent maximum	
Counting range	$0 \ldots 32,767$ or $-32,768 \ldots . . .+32,767$,   depending on operating mode	
Counting Frequency	1 kHz maximum	
	Input 1 with 5 V pulses 10 kHz maximum	

## ZAE 204 Enable

 Inputs (Gate)Enable input details:

Quantity	
4	
Rated Signal Value	24 V
Signal Level	HIGH Signal
	LOW signal
Input Current	$-2 \ldots 30 \mathrm{~V}$
Input Delay (contact bounce suppression)	4 ms
Input Rise Time	$\mathrm{N} / \mathrm{A}$

ZAE 204

## Semiconductor Outputs

Semiconductor output details:

Quantity	4
Working Voltage V	$\mathrm{U}_{\mathrm{S}}=24 \mathrm{Vdc}$
Signal Language	True High
Signal Output Level	ON V
	OFF $0 \ldots .2 \mathrm{~V},<1 \mathrm{~mA}$
	$\mathrm{U}_{\mathrm{S}}=20 \ldots 30 \mathrm{Vdc}$
Load Current/Output	500 mA maximum
Load Current for All Outputs	1 A maximum
Switching Delay	$<1 \mathrm{~ms}$
Power Dissipation	1.25 W
Inrush Current for Lamps	5 W maximum

ZAE 204
Operating fequency details:

Resistive Load		$100 / \mathrm{s}$
Inductive Load @ 500 mA		$1000 / \mathrm{hr}$
Bulb Load	@ 1.2 W	$8 / \mathrm{s}$
	@ 5 W	$1000 / \mathrm{hr}$

## ZAE 204 I/O Map Register detail:

Registers $3 x / 4 x$	6 in/1 out

Dimensions details:

$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	mm	$40.3 \times 145 \times 117.5$
	in	$1.6 \times 5.6 \times 4.5$
Weight	g	300
	lb	0.7

## ZAE 204 Agency

Approvals

Agency Approval details:
VDE 0160; UL 508; CSA 22.2 No. 142 and FM Class I, Div 2 Standards.

## Appendices

## At a Glance

Purpose The following chapters contain material related to A120 I/O modules.
What's in this Appendix?

The appendix contains the following chapters:

Chapter	Chapter Name	Page
A	IEC Wiring Diagrams for A120 I/O Modules	691
B	I/O Configuration with Concept	739
C	I/O Configuration of A120 Series I/O Modules with Modsoft	821
D	Modsoft Application Examples for Selected A120 Series I/O   Modules	829
E	A120 Option Modules	845
F	Requirements for CE Compliance	857
G	Technical Assistance	867

## IEC Wiring Diagrams for A120 I/O Modules

## At a Glance

Introduction	This chapter provides IEC-compliant wiring diagrams for the A120 Series I/O   modules.	
What's in this	This chapter contains the following topics:	Page
Chapter?	Topic	692
IEC Nomenclature Legend	693	

## IEC Nomenclature Legend

## Legend

The following table describes the IEC nomenclature used in the IEC wiring diagrams.

Nomenclature	Description
U	Voltage
I	Current
M	Common
PE	Ground
L	230 Vac or hot
US	24 Vdc
UB	Supply voltage for modules
US	Working voltage for activating the
N1	Supply 1
N2	Supply 2
E1	Input 1
A1	Output 1
EW1	Output 1 wiring 1 wiring
AW1	Automatic circuit breaker 1 or fuse
F1	Capacitor 1
C1	Isolation diode 1
V1	Resistor 1
R1	Gate
G	

## IEC Wiring Diagrams for A120 Modules

## Overview

ADU 204 IEC Wiring Diagram

The following diagrams are IEC-compliant versions of the A120 diagrams shown throughout this manual.

The following figure is the IEC wiring diagram for the ADU 204.

$\qquad$

ADU 205 IEC The following figure is the IEC wiring diagram for the ADU 205. Wiring Diagram


ADU 206 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the ADU 206.


* For current inputs please use the enclosedjumpers

ADU 210 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the ADU 210.


* Apply Jumpers to select 20mA range per channel.

ADU 211/212 IEC The five figures that follow are all ADU 211/212 IEC wiring diagrams. Wiring Diagrams The following figure is an ADU 211/212 IEC wiring diagram.


The following figure is an ADU 211/212 IEC wiring diagram.


The following figure is an ADU 211/212 IEC wiring diagram.


The following figure is an ADU 211/212 IEC wiring diagram.


The following figure is an ADU 211/212 IEC wiring diagram.


ADU 214 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the ADU 214.


1) Resistance temperature detector Pt 100 ... 1000, Ni 100 ... 1000 or remote resistance detector 0 ... 2000 Ohm
2) External reference resistance 50 or 100 Ohm, $0.1 \%, 0.125 \mathrm{~W}$, Tk 25
3) See Voltage and Current measuring
4) The common reference point "AGND" is internally connected to 0 V (reference potential of PLC).

ADU 216 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the ADU 216.


The following figure is the IEC wiring diagram for the ADU 257.


ADU 257 IEC Wiring Diagram

## DAO 216 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAO 216.


* Terminal 11 should be connected in the shortest possible way to the functional earth (hat rail). In case of connection failure compensating currents can occur via $\mathrm{M} 2 \rightarrow 0 \mathrm{~V}$ path. These lead to the destruction of the protective resistor (R31).

DAP 204 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 204.


DAP 208 IEC Wiring Diagram

The following figure is IEC wiring diagram for the DAP 208.


## DAP 210 IEC Wiring Diagram <br> The following figure is IEC wiring diagram for the DAP 210. <br> 

DAP 211 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 211. Note that this diagram is for Voted (Dual) applications only. See DAP 211 Combined I/O Module Field Wiring, p. 294for more information.


DAP 212 and DAP 292 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 212 and the DAP 292.


DAP 216/DAP 216N IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 216/DAP216N.


DAP 217 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 217.

$\qquad$

DAP 218 IEC

## Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 218.


DAP 220 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 220.


DAP 252 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 252.


DAP 253 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAP 253.


DAU 202 IEC The following figure is the IEC wiring diagram for the DAU 202.
Wiring Diagram


DAU 204 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAU 204.


DAU 208 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DAU 208.


## DEO 216 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DEO 216.


* Terminal 11 should be connected in the shortest possible way to the functional earth (hat rail). In case of connection failure compensating currents can occur via $\mathrm{M} 2 \rightarrow 0 \mathrm{~V}$ path, which lead to the destruction of the protective resistor (R16).

DEP 208 and DEP The following figure is the IEC wiring diagram for both the DEP 208 and the 210 IEC Wiring DEP 210.

## Diagram



DEP 211 IEC Wiring Diagram

The following figure is the DEP 211 IEC wiring diagram.

$\qquad$

DEP 214 IEC
The following figure is the IEC wiring diagram for the DEP 214. Wiring Diagram


DEP 215 and DEP The following figure is the IEC wiring diagram for both the DEP 215 and the DEP 217 IEC Wiring 217. Diagram


DEP 216 and DEP The following figure is the IEC wiring diagram for both the DEP 216 and the 220 IEC Wiring DEP 220. Diagram


DEP 218 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DEP 218.


DEP 257 IEC Wiring Diagram

The following figure is the IEC wiring diagram for the DEP 257.


DEP 296 and DEP The following figure is the IEC wiring diagram for both the DEP 296 and the DEP 297 IEC Wiring 297. Diagram


MOT 201/202 IEC Wiring Diagram

The seven figures that follow are IEC wiring diagrams for the MOT 201, the MOT 202, or both (MOT 201/202), as specified in the introduction to each diagram.

The following figure is an MOT 201/202 IEC wiring diagram.


-     -         -             -                 -                     - 

The following figure is an MOT 201 (Motor Drive) IEC wiring diagram.


The following figure is an MOT 201/202 (Encoder) IEC wiring diagram.


The following figure is an MOT 202 (Motor Drive) IEC wiring diagram.


The following figure is an MOT 202 (Resolver) IEC wiring diagram.


The following figure is an MOT 202 (Resolver) IEC wiring diagram.


The following figure is an MOT 202 (Motor Driver) IEC wiring diagram.


VRC/CTR 2xx IEC The following figure is the IEC wiring diagram for the VRC/CTR 2xx. Wiring Diagram


## ZAE 201 IEC Wiring Diagram

Both of the following figures are IEC wiring diagrams for the ZAE 201.
The following figure is a ZAE 201 IEC wiring diagram.


* with Attached Jumpers (as Delivered)

The following figure is a ZAE 201 IEC wiring diagram.


* with Attached Jumpers (as Delivered)
$\begin{array}{ll}\text { ZAE } 204 \text { IEC } & \text { Both of the following figures are IEC wiring diagrams for the ZAE } 204 . \\ \text { Wiring Diagram } & \text { The following figure is a ZAE } 204 \text { IEC wiring diagram. }\end{array}$


The following figure is a ZAE 204 IEC wiring diagram.


## I/O Configuration with Concept

## At a Glance

Introduction This chapter describes how to configure A120 Series I/O modules with Concept.

Note: When using Modsoft with certain A120 I/O modules you had to build ladder logic to multiplex the data into the PLC. This is no longer required when using Concept programming panel software for these I/O modules: ADU 214/216/211/ 212, VIC 2xx/VRC 2xx/CTR2xx.

What's in this This chapter contains the following topics:
Chapter?

Topic	Page
Multiplexing I/O Data with Concept	740
Configuring A120 Discrete Input Modules with Concept	741
Configuring Discrete Output Modules with Concept	744
Configuring Discrete Combination Modules with Concept	748
Configuring Analog Input Modules with Concept	755
Analog Output Modules	793
Intelligent Modules	803
Communication Interfaces	813
Concept I/O Map Status Words	816

## Multiplexing I/O Data with Concept

Overview	If you use Modsoft to configure certain A120 I/O modules, you must build ladder
logic to multiplex the data into the PLC. This is not required if you use Concept	
programming panel software for the following I/O modules: ADU214/216/211/212,	
VIC2xx/VRC2xx/CTR2xx.	

## Configuring A120 Discrete Input Modules with Concept

Discrete Input Modules

This following information describes how to configure these modules:

- DEO 216 16-point 24 Vdc Discrete Input
- DEP 208 8-point 230 Vac Discrete Input
- DEP 209 8-point 120 Vac Discrete Input
- DEP 210 8-point 115 Vac Isolated Discrete Input
- DEP 211 8-point 115 Vac Isolated Discrete Input
- DEP 214/254/254C 16-point 12 ... 60Vdc Discrete Input
- DEP 215 16-point 5 Vdc TTL Discrete Input
- DEP 216/256/256C 16-point 24 Vdc Discrete Input
- DEP 217 16-point 24 Vdc Discrete Input
- DEP 218 16-point 115 Vac Isolated Discrete Input
- DEP 220 16-point 24 Vdc Discrete Input
- DEP 257 16-point 110 Vdc Discrete Input
- DEP 296 16-point 60 Vdc Isolated Discrete Input
- DEP 297 16-point 48 Vdc Isolated Discrete Input
- DEP 284* 8-point 115 Vac Isolated Discrete Input
*The DEP 284 is a "special", and therefore it is not included in this document.

I/O Configuration Using Concept 2.1 or Higher

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select DEPxxx and click on OK. A number and description appear.
6	In the In Ref field, enter 1x or 3x and press Enter. The software completes the   In Ref and In End fields.
7	Click on Params... The Input Type dialog appears.
8	Select either Binary or BCD and click on OK. Binary is the default

## AS-BDEO-216/ <br> AS-BDEP 214/ 215/ 216/ 217/ 218/220/ 254(C)/ 256(C)/ 257(C)/ 296/ 297

The AS-BDEO-216 dialog box, which follows, is used with these modules: AS-BDEO-216/ AS-BDEP 214/ 215/ 216/ 217/ 218/ 220/ 254(C)/ 256(C)/ 257(C)/ 296/ 297.


Input Type: The Binary and BCD option buttons in the input type section require corresponding choices between 1 x -/3x-references (i.e., in binary or BCD). The 1 x references are shown in binary.

Meanings for the AS-BDEO-216/
AS-BDEP 214/ 215/ 216/ 217/ 218/220/ 254(C)/ 256(C)/ 257(C)/ 296/ 297 Module Mapping

These modules require sixteen 1 x -discrete inputs. A single $3 x$-input register can be mapped instead of sixteen 1 x -discrete inputs (shown in the following figure).

The following figure shows the $3 x$-register arrangement for the above-named modules.


AS-BDEP 208/ 210/211

The AS-BDEP-208 dialog, shown in the following figure, is used with these modules: AS-BDEP 208/210/211.


Input Type: The Input Binary and BCD option buttons require a corresponding choice between $1 \mathrm{x}-/ 3 \mathrm{x}$-references (i.e., in binary or BCD).

Meanings for the AS-BDEP 208/ 210/ 211 Module Mapping

These modules require eight $1 x$-discrete inputs. A single $3 x$-input register can be mapped instead of eight 1 x -discrete inputs.
The following figure shows the $3 x$-register arrangement for the above-named modules.


Bits 8 ... 15 are not used

Note: Concept provides three ways to display address formats. The default is standard (400001). To change the address format display, use the steps in Change Address Format Display Procedure, p. 743. All four formats apply to discrete, analog, and intelligent modules.

Change Address Format Display Procedure

Use the following steps to modify the address format display.

Step	Action
1	From the Main menu, select Options, then select Preferences.
2	Select standard (400001), separator (4:00001), or compact (4:1); then click   on OK.

## Configuring Discrete Output Modules with Concept

Discrete Output This following information describes how to configure these modules:
Modules

- DAO 216 16-point 24 Vdc Discrete Output
- DAP $2 x 4$ 4-point 24 ... 110 Vdc/24 ... 250 Vac Relay Discrete Output
- DAP 208/258/258C 8-point 24 ... 110 Vdc/24 ... 250 Vac Relay Discrete Output
- DAP 209 8-point 120 Vac Discrete Output
- DAP 210 8-point 24 ... 240 Vac Discrete Output
- DAP 216(N)16-point 24 Vdc Discrete Output
- DAP 217 16-point 5 ... 24 Vdc Discrete Output
- DAP 218 16-point 24 ... 240 Vac Discrete Output
- DAP 284* 4-point 24 ... 110 Vdc/24 ... 250 Vac Relay Discrete Output (Special, Intrinsically Safe)
*The DAP 284 is a "special", and therefore it is not included in this document.


## I/O Configuration

 Using Concept 2.1 or HigherUse the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select DAPxxx and click on OK. A number and description appear.
6	In the In Ref field, enter Ox or 4x and press Enter. The software fills in the Out   Ref and Out End fields.
7	Click on Params... The Output Type and Timeout State dialogs appear.
8	Select either Binary or BCD for the Output Type, and either Last Value or User   Defined for the Timeout State. Click on OK.

## A CAUTION

## Power-down or kernel mode.

The output module Timeout States are valid only in a normal PLC stop state. Therefore, when the PLC powers down or goes into kernel mode, the outputs default to the module's fail safe state. The Timeout States are defined in the I/O Map module parameter screens.
Failure to follow this instruction can result in injury or equipment damage.

AS-BDAO-216/ AS-DAP-216/N/ 217/218/209

Meanings for the AS-BDAO-216/ AS-DAP-216/N/ 217/218/209 Module Mapping

The AS-BDAO-216 dialog box, which follows, isused with the following modules: AS-BDAO-216/ AS-DAP-216/N/ 217/ 218/209.


Output Type: The Binary and BCD option buttons require corresponding choices between $0 x-/ 4 x$-references (i.e., in binary or BCD).
Timeout State: The Compact timeout state only reflects a user program in stop mode.

Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.
Activation of the User Defined option button causes the outputs to assume the value defined in the user-defined timeout state text field.
User Defined: If the User Defined option button was activated, the corresponding hex value can be entered here.

The AS-BDAO-216/ AS-DAP-216/N/217/ 218/209 modules require $160 x$-discrete outputs. The BCD button will alternatively require mapping to a $4 x$-output register. The following figure shows the AS-BDAO-216/ AS-DAP-216/N/ 217/ 218/209 4x register arrangement.


AS-BDAP-204

Meanings for the AS-BDAP-204 Module Mapping

This AS-DBAP-204 dialog, which follows, is used with the following modules: AS-BDAP-204.
AS-BDAP-204 区

Output Type	
O Binary	O BCD

## Timeout State:

O Last Value O User Defined User Defined Timeout State (In Hex.):
0000
OK
Cancel
Help

Output Type: The Binary and BCD option buttons require corresponding choices between $0 x-/ 4 x$-references (i.e., in binary or BCD).
Timeout State: The Compact timeout state only reflects a user program in stop mode.

Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.
Activation of the User Defined option button causes the outputs to take on the value defined in the user-defined timeout state text field.
User Defined: If the User Defined option button was activated, the corresponding hex value can be entered here.

The AS-BDAP-204 module require four 0x-discrete outputs. The BCD option button will alternatively require mapping to a $4 x$-output register.
The following diagram shows the AS-BDAP-204 4x-register arrangement.


## Configuring Discrete Combination Modules with Concept

Discrete	This follwoing information describes how to configure these modules:
Combination	DAP 211 Monitored 4-point in/4-point out 120 Vac Combined I/O
Modules	DAP 212/252/252C 8-point in/4-point out 24 Vdc Combined I/O
	DAP 220/250/250C 8-point in/8-point out 24 Vdc Combined I/O
	DAP 252 8-point in/4-point relay out 24 Vdc LT Combined I/O
	DAP 253 8-point in/4-point relay out 110 Vdc LT Combined I/O
	DAP 292 8-point in/4-point relay out 60 Vdc Combined I/O

I/O Configuration using Concept 2.1 or Higher

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select DAPxxx and click on OK. A number and description appear.
6	In the In Ref field, enter 1x or 3x and press Enter. The software completes the   In Ref and In End fields.
7	In the Out Ref field, enter Ox or 4x and press Enter. The software completes the   Out Ref and Out End fields.
8	Click on Params... The Output Type and Timeout State dialogs appear.
9	Select either Binary or BCD for the Output Type and either Last Value or User   Defined for the Timeout State. Click on OK.

## A CAUTION

## Power-down or kernel mode.

The output module Timeout States is valid only in a normal PLC stop state.
Therefore, when the PLC powers down or goes into kernel mode, the outputs default to the module's fail safe state. The Timeout States are defined on the I/O Map module parameter screens.
Failure to follow this instruction can result in injury or equipment damage.

The AS-BDAP-211dialog, which follows, is used with the following module: AS-BDAP-211


Output Type: The output Binary and BCD option buttons require corresponding choices between $0 x-/ 4 x$-references (i.e., in binary or BCD).
Input Type: The input Binary and BCD option buttons require corresponding choices between 1x-/3x-references (i.e., in binary or BCD).
Timeout State: The Compact Timeout State only reflects a user program in stop mode.

Activation of the Last Value option button causes the outputs to retain their last valid valueupon user program stop.

Activation of the User Defined option button causes the outputs to take on the value defined in the user-defined timeout state text field.

User Defined: If the User Defined option button was activated, the corresponding hex value can be entered here.

Meanings for the AS-BDAP-211 Module Mapping

The AS-BDAP-211 modules require four 1x-discrete inputs and four $0 x$-discrete outputs. The BCD option button will alternatively require mapping to a $4 x$-output register instead of four $0 x$-discrete outputs. A single $3 x$-input register can be mapped, instead of four 1x-discrete inputs (as shown in the following figures).
The following figure shows the AS-BDAP-211 3x-register arrangement.


The following figure shows the AS-BDAP-211 4x-register arrangement.


The AS-BDAP-212/252(C)/ 253/ 292 dialog box, which follows, is used with the following modules: AS-BDAP-212/ 252(C)/ 253/ 292.


Output Type: The output Binary and BCD option buttons require corresponding choices between $0 x-/ 4 x$-references (i.e., in binary or BCD).

Input Type: The input Binary and BCD option buttons require corresponding choices between 1x-/3x-references (i.e., in binary or BCD).

Timeout State: The Compact Timeout State only reflects a user program in stop mode.

Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.

Activation of the User Defined option button causes the outputs to assume the value defined in the user-defined timeout state text field.

User Defined: If the User Defined option button was activated, the corresponding hex value can be entered here.

Meanings for the AS-BDAP-212/ 252(C)/ 253/ 292 Module Mapping

The AS-BDAP-212/252(C)/ 253/ 292 modules require eight 1x-discrete inputs and four $0 x$-discrete outputs. The BCD option button will alternatively require mapping to be made to a $4 x$-output register. A single $3 x$-input register can be mapped instead of eight 1 x -discrete inputs.
The following figure shows the AS-BDAP-212/252(C)/253/292 3x-register arrangement.


The following figure shows the AS-BDAP-212/ 252(C)/253/292 4x-register arrangement.


The AS-BDAP220/250(C) dialog, which follows, is used with the following modules: AS-BDAP-220/250(C).


Output Type: The output Binary and BCD option buttons require corresponding choices between $0 x-/ 4 x$-references (i.e., in binary or BCD).

Input Type: The input Binary and BCD option buttons require orresponding choices between 1x-/3x-references (i.e., in binary or BCD).

Timeout State: The Compact Timeout State only reflects a user program in stop mode.

Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.

Activation of the User Defined option button causes the outputs to take on the value defined in the user-defined timeout state text field.

User Defined: If the User Defined option button was activated, the corresponding hex value can be entered here.

Meanings for the AS-BDAP-220/ 250(C) Module Mapping

The AS-BDAP-220/ 250(C) modules require eight 1x-discrete inputs and eight 0xdiscrete outputs. The output BCD option button will alternatively require mapping to a $4 x$-output register. The input BCD option button will require a $3 x$-input register mapping (as shown in the following two figures).

The following figure shows the AS-BDAP-220/ 250(C) 3x-register arrangement.


The following figure shows the AS-BDAP-220/ 250(C) 4x-register arrangement.


## Configuring Analog Input Modules with Concept

## Analog Input Modules

I/O Configuration Using Concept 2.1 or Higher

The following information describes how to configure these modules:

- ADU 204/254/254C 4-point Voltage/RTD Analog Input
- ADU 205 4-point Voltage/Current Analog Input
- ADU 206/256/256C 4-point Voltage/Current Isolated Analog Input
- ADU 210 4-point Voltage/Current Analog Input (Only supported in Concept 2.2 or higher)
- ADU 214 8-point Voltage/Current Isolated Analog Input (Only supported in Concept 2.2 or higher)
- ADU 216 8-point Thermocouple Isolated Analog Input
- ADU 257/257C 8-point Millivolts/RTD/TC/Resistance Analog Input (Only supported in Concept 2.2 or higher)
- ADU 282/282M* 2 -point Analog Input (Special, Intrinsically Safe)
- ADU 284* 2-point Analog Input (Special, Intrinsically Safe)
- ADU 211/212 8-point Universal Isolated Analog Input (Not supported in Concept 2.1 or higher)
*This is a "special", and therefore it is not included in this document.

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select ADUxxx and click on OK. A number and description appear.
6	In the In Ref field, enter 3x and press Enter. The software completes the In Ref   and In End fields.
7	Click on Params... The applicable configuration dialog appears, depending on   the selected module. Refer to the specific modules.

Configuring AS-BADU-204/ 254(C) Modules

The following information applies to the AS-BADU-204/254(C) modules. The AS-BADU-204/ 254(C) parameter dialog, which follows, is used for the analog modules AS-BADU-204/ 254(C).

## AS-BADU204/254


Channel Configuration:


Type:


Channel: The option buttons here allow the selection of individual channels for configuration, as follows:

- Channel 1 = Pins 3 ... 6
- Channel $2=$ Pins $7 . . .10$
- Channel $3=$ Pins 14 ... 17
- Channel $4=$ Pins 18 ... 21

Channel-specific option panels are presented for each channel selection. Values entered for a channel are saved automatically when another channel is selected, and therefore are not lost during the definition of another channel.
Channel Configuration: Measuring ranges and data formats for temperature measurement data transfer to the Compact PLC can be determined in this list box.
The $\mathbf{1 . 0} \mathbf{C / F}$ and $\mathbf{0 . 1} \mathrm{C} / \mathrm{F}$ option buttons allow a choice of measuring steps of either 1.0 or 0.1 degree (in Centigrade or Fahrenheit). This allows differing displays for the same measurement value, as shown in the following table.

$\mathbf{1 . 0}$ degree Centigrade	$\mathbf{0 . 1}$ degree Centigrade
-60	-600
200	2000

The remaining option buttons 13-bit and 15-+sign (15-bit value + sign) determine the value range to be transferred.

The tables that follow are present values for all configurable resistive temperature sensors, which are listed here:

- Pt 100, -200 to 850
- Pt 200, -200 to 250
- Ni 100, -60 to 250
- Ni 200, -60 to 150
- APt 100, -200 to 600
- APt 200, -200 to 250
- R, 0 to 400 ohms

Pt 100-200 degrees $C$ to 850 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0} \mathbf{C}$	$\mathbf{0 . 1} \mathbf{C}$	$\mathbf{1 . 0} \mathbf{F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-205$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-200	-200	-2000	-328	-3280	3132	-7529	
0	0	0	+32	+320	4096	0	Nominal range
+850	+850	+8500	+1562	+15620	8191	32000	
$>+870$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

Pt 200-200 degrees $C$ to 250 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0} \mathbf{C}$	$\mathbf{0 . 1} \mathbf{C}$	$\mathbf{1 . 0 ~ F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-205$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-200	-200	-2000	-328	-3280	819	-25600	
0	0	0	+32	+320	4096	0	Nominal range
+250	+250	+2500	+482	+4820	8191	32000	
$>+256$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

Ni 100-60 degrees $C$ to 250 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0} \mathbf{C}$	$\mathbf{0 . 1} \mathbf{C}$	$\mathbf{1 . 0} \mathbf{F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-61$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-60	-60	-600	-76	-760	3113	-7680	
0	0	0	+32	+320	4096	0	Nominal range
+250	+250	+2500	+482	+4820	8191	32000	
$>+256$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

Ni 100-60 degrees $C$ to 150 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0 ~ C}$	$\mathbf{0 . 1 ~ C}$	$\mathbf{1 . 0 ~ F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-61$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-60	-60	-600	-76	-760	2458	-12800	
0	0	0	+32	+320	4096	0	Nominal range
+150	+150	+1500	+302	+3020	8191	32000	
$>+151$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

APt 100-200 degrees $C$ to 600 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0} \mathbf{C}$	$\mathbf{0 . 1 ~ C}$	$\mathbf{1 . 0 ~ F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-205$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-200	-200	-2000	-328	-3280	2731	-10667	
0	0	0	+32	+320	4096	0	Nominal range
+600	+600	+6000	+1112	+11120	8191	32000	
$>+614$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

APt 200-200 degrees $C$ to 250 degrees $C$

Temp.   (degrees C)	$\mathbf{1 . 0} \mathbf{C}$	$\mathbf{0 . 1 ~ C}$	$\mathbf{1 . 0} \mathbf{F}$	$\mathbf{0 . 1 ~ F}$	13-bit	15-bit + sign	Measuring step/   value range
$<-205$	-32768	-32768	-32768	-32768	0	-32768	Under-range
-200	-200	-2000	-328	-3280	819	-25600	
0	0	0	+32	+320	4096	0	Nominal range
+250	+250	+2500	+482	+4820	8191	32000	
$>+256$	+32767	+32767	+32767	+32767	8191	+32767	Overrange

R, 0 to 400 ohms

Resistance in W	13-bit	15-bit + sign	Value range
0	0	0	
100	2048	+8000	Recommended
200	4096	+16000	nominal range
399.902	8191	+32000	
$>=400$	8191	+32767	Overrange

Type: In this section, an option button can be used to choose a resistive temperature sensor type for the selected channel, or a direct resistance measurement can be performed.

## Meanings for the AS-BADU-204/ 254(C) Module Mapping

Note: The type R, 0 to 400 ohms button, only selects values whose size has been determined to be either 13-bit or 15-bit + sign through the appropriate option buttons.

The AS-BADU-204/254(C) modules require four 3x-input registers addressed in sequence, beginning with channel 1 as shown here.


LSB

Note: Refer toConcept I/O Map Status Words, p. 816.

AS-BADU-205 The following information applies to the AS-BADU-205 module.
The 20AS-BADU-205 parameter dialog, which follows, is valid for the analog module AS-BADU-205.

## AS-BADU 205

x



Resolution Mode: This list box defines the value range for all channels:

- 12-bit
- 12-bit + sign
- 13-bit
- 15-bit + sign
- 16-bit

Channel 1 ... 4: The desired measuring ranges can be chosen in these list boxes.

Note: The combination of current and voltage ranges is not allowed. Pay attention to the switches on the rear of the module.

The measuring ranges can be chosen from the following selections:

- +/- 20 VDC
- +/- 40 mA
- +/- 10 VDC
- +/- 20 mA
- 0 ... 20 mA
- 4 ... 20 mA
- 0 ... 10 VDC
- 0 ... 20 VDC
+/- $20 \mathrm{~mA},+/-40 \mathrm{~mA}$

Input current   (mA)	12-bits	13-bits	16-bits	12-bits +   sign	15-bits +   sign	Range
$<-20 /-40$	0	0	0	-4095	-32768	Under-range
$-20 /-40$	0	0	0	-4095	-32000	
0	2048	4096	32768	0	0	Nominal range
$+20 /+40$	4095	8191	65520	+4095	+32000	
$>+20 /+40$	4095	8191	65520	+4095	+32767	Overrange

+/- 10 VDC, +/- 20 VDC

Input voltage   (VDC)	12-bits	13-bits	16-bits	12-bits +   sign	15-bits +   sign	Range
$<-10 /-20$	0	0	0	-4095	-32768	Under-range
$-10 /-20$	0	0	0	-4095	-32000	
0	2048	4096	32768	0	0	Nominal range
$+10 /+20$	4095	8191	65520	+4095	+32000	
$>+10 /+20$	4095	8191	65520	+4095	+32767	Overrange

0 ... 10 VDC, $0 \ldots 20$ VDC

Input voltage   (VDC)	12-bits	13-bits	16-bits	12-bits +   sign	15-bits +   sign	Range
$<0$	0	0	0	-4095	-32768	Under-range
0	0	0	0	0	0	Nominal range
$10 / 20$	4095	8191	65520	+4095	+32000	
$>10 / 20$	4095	8191	65520	+4095	+32767	Overrange

0... 20 mA

Input current   $(m A)$	12-bits	13-bits	16-bits	12-bits +   sign	15-bits +   sign	Range
$<0$	0	0	0	-4095	-32768	Under-range
0	0	0	0	0	0	Nominal range
20	4095	8191	65520	+4095	+32000	
$>20$	4095	8191	65520	+4095	+32767	Overrange


$4 \ldots 20 \mathrm{~mA}$
Input current   $(\mathbf{m A})$ 12-bits 13-   bits 16-bits 12-bits   +sign 15-bits +   sign Range   $<0 \ldots 2$ 0 0 0 0 0 Wire breakage   $2.1 \ldots 3.61$ 0 0 0 0 -32768 Under-range   $3.62 \ldots 3.99$ 0 0 0 0  Tolerable range   4 0 0 0 0 0 Nominal range   20 4095 8191 65520 +4095 +32000    $>20$ 4095 8191 65520 +4095 +32767

Meanings for the AS-BADU-205 Module Mapping

The AS-BADU-205 module requires four $3 x$-input registers addressed in sequence, beginning with channel 1 (as shown in the following figure).
$3 x$-register 1 (channel 1)



3x-register 4 (channel 4)


Note: Refer toConcept I/O Map Status Words, p. 816.

## AS-BADU-206/

 256(C)The following information describes the AS-BADU-206/256(C) modules.
The AS-BADU-206/ 256(C) parameter dialog shown below is valid for the analog modules AS-BADU-256/ (C).

AS-BADU206/256

OK

Cancel
Help

Overrange: Activation of the Overrange option button enables range exception monitoring. Any range exceptions then trigger a corresponding message within the first input status word (bits 0 ... 3).
Open circuit: Activation of the Open circuit (wire breakage) option button enables open-circuit monitoring. Any subsequent error messages are then visible within the first input status word (bits 4 ... 7).
Unipolar: Selection of the Unipolar option button restricts choices to the unipolar measuring ranges (e.g. $0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$ ).
Resolution: This list box defines the value range for all channels:

- 11-bit + sign
- 12-bit
- 15-bit + sign
- 16 -bit

Channel 1 ... 4: The measuring ranges for channels 1-4 can be chosen from the tables that follow.

Measuring ranges 0 ... 10 VDC/2 ... 10 VDC, 0 ... $20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$

Voltage   (VDC)	Current   (mA)	12-bits	16-bits	11-bits +   sign	15-bits +   sign	Range
		0	0	0	0	Under-range
		0	0	0	0	Neg. tolerance   range
$0 / 2$	$0 / 4$	0	0	0	0	Nominal range
10	20	4000	64000	+2000	+32000	
$10.01 \ldots$	$20.02 \ldots$	4001	64016	+2001	+32016	Pos. tolerance   range
$>=10.24 /$   10.19	$>=20.48 /$   20.39	4095	65520	+2047	+32760	Overrange

Measuring ranges +/- $10 \mathrm{VDC} /$ +/- 20 mA

Voltage (VDC)	Current   (mA)	12-bits	16-bits	11-bits   +sign	15-bits +   sign	Range
$<=-10.24$	$<=-20.48$	0	0	-2048	-32768	Under-range
-10.01	-20.02	47		-2001	-32016	Neg. tolerance   range
-10.00   0   +10.00   $+10.01 \ldots$	-20	48	768	-2000	-32000	Nominal range
+20	$+20.02 \ldots$	4049	4048	64768	0   +2000   +2001	+32000   +32016
$>=10.24$	$>=20.48$	4095	65520	+2047	+32752	Pos. tolerance   range

AS-BADU-206/ 256(C) Module Input Status Word

The AS-BADU-206/256 modules require five $3 x$-input registers addressed in sequence, beginning with the input status word, then channel. (Refer to the following two figures.)
The following figure shows the AS-BADU-206/ 256(C) 3x module status word. 3x-register 1

$1=$ The module is not ready, or one or more of the bits 1 ... 4 are set

1 = External supply voltage is not present

1 = Range exception for the current or voltage ranges $4 \ldots 20 \mathrm{~mA}, 0.2$... 1 VDC, 2 ... 10 VDC
$1=12$-bit unipolar module setting for current or voltage

Channel 4 measuring range over/underrun or wire breakage

Channel 3 measuring range over/underrun or wire breakage
Channel 2 measuring range over/underrun or wire breakage

Channel 1 measuring range
over/underrun or wire breakage

Meanings for the AS-BADU-206/ 256(C)Module Mapping

The following figure shows the AS-BADU-206/ 256(C) 3x-register arrangement.


3x-register 4 (channel 3)


The following information applies to the AS-BADU-210 module.
The dialog, which follows, works with the analog module AS-BADU-210.


## Channel 1 ... 4:

For Chanel ... 4, use the following guidelines:

- Select inactive when channel is not used.
- Select limit < > 0 if you want to use the $1.6 \%$ rated value without causing an error for uniplar ranges only.
Use the information in the following tables to choose the measuring ranges for channels 1 to 4 .

Conversion Values of Voltage Inputs

Analog value $0 \text {... } 5 \text { V }$	Analog value $0 \text {... 10V }$	Analog value $1 \ldots 5 \mathrm{~V}$	Analog value $2 . .$. 10 V	Analog value +/-5 V	Analog value +/-10 V	Decimal value	Notes
<-0.080	<-0.16	<+0.52	<+1.04	<-5.12	<-10.24	-32 767	underflow error
				$\begin{aligned} & -5.119 \ldots- \\ & 5.00 \end{aligned}$	$\begin{aligned} & -10.239 \ldots- \\ & 10.00 \end{aligned}$	$\begin{aligned} & -32766 \ldots \text { - } \\ & 32001 \end{aligned}$	overload range
$-0.08 \ldots-0.00$	-0.16 ... -0.00	$\begin{aligned} & +0.52 \ldots \\ & +0.936 \ldots \\ & +0.99 \end{aligned}$	$\begin{aligned} & +1.04 \ldots \\ & +1.87 \ldots \\ & +1.99 \end{aligned}$			$\begin{aligned} & 0(-3840) 0 \\ & (-512) 0(-1) \end{aligned}$	overload range
				-5.00	-10.00	-32 000	linear
				-2.50	-5.00	-16 000	linear
				-0.50	-1.00	-3 200	linear
				-0.25	-0.50	-1600	linear
				-0.05	-0.10	-320	linear
				-0.005	-0.01	-32	linear
				-0.0025	-0.005	-16	linear
0	0	1	2	0	0	0	linear
0.0025	0.005	1.002	2.004	+0.0025	+0.005	+16	linear
0.005	0.01	1.004	2.008	+0.005	+0.01	+32	linear
0.05	0.10	1.04	2.08	+0.05	+0.10	+320	linear
0.25	0.50	1.20	2.40	+0.25	+0.50	+1600	linear
0.50	1.00	1.40	2.80	+0.50	+1.00	+3 200	linear
2.50	5.00	3.00	6.00	+2.50	+5.00	+16000	linear
5.00	10.00	5.00	10.00	+5.00	+10.00	+32 000	rated value
5.000... 5.119	$\begin{aligned} & 10.000 \ldots \\ & 10.239 \end{aligned}$	5.00... 5.09	$\begin{aligned} & 10.00 \ldots \\ & 10.19 \end{aligned}$	$\begin{aligned} & +5.000 . . \\ & +5.119 \end{aligned}$	$\begin{aligned} & +10.00 \ldots \\ & +10.239 \end{aligned}$	$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$	overload range
>5.12	>10.24	>5.09	>10.19	>+5.20	>+10.24	>+32 767	overflow error

Note: Brackets denote range with limiting value $-1.6 \%$. No brackets denotes range with limiting value 0 .

Conversion Values of Current Inputs

Analog   value 0 ...   20 mA	Analog value 4 ... 20 mA	Analog value +/-20 mA	Decimal value	Notes
<-0.32	<+2.08	<-20.479	-32 767	underflow error
		-20.478 ... -20.000	-32 $766 \ldots$... 32001	overload range
$\begin{aligned} & -0.32 \ldots- \\ & 0.00 \end{aligned}$	$\begin{aligned} & +2.08 \ldots+3.74 \ldots \\ & +3.99 \end{aligned}$		$\begin{aligned} & 0(-3840) 0(-512) 0 \\ & (-1) \end{aligned}$	overload range
		-20.00	-32 000	linear
		-10.00	-16000	linear
		-2.00	-3 200	linear
		-1.00	-1600	linear
		-0.20	-320	linear
		-0.02	-32	linear
		-0.01	-16	linear
0	+4	0	0	linear
+0.01	+4.008	+0.01	+16	linear
+0.02	+4.016	+0.02	+32	linear
+0.20	+4.16	+0.20	+320	linear
+1.00	+4.80	+1.00	+1600	linear
+2.00	+5.60	+2.00	+3 200	linear
+10.00	+12.00	+10.00	+16000	linear
+20.00	+20.00	+20.00	+32000	rated value
$\begin{aligned} & +20.000 \ldots \\ & +20.478 \end{aligned}$	+20.00 ... +20.38	+20.000 .. +20.478	+32 $001 \ldots+32766$	overload range
>+20.479	>+20.38	>+20.479	>+32 767	overflow error

Note: Brackets denote range with limiting value $-1.6 \%$. No brackets denotes range with limiting value 0 .


AS-BADU-214 The following dialog is valid for the analog module AS-BADU-214.
AS-BADU214 $\mathbf{x}$

OChannel $1 / 2$	OChannel $3 / 4$	OChannel 5/6	OChannel 7/8


$\square$ Channel 1 inactive			$\square$ Channel 2 inactive	
OV	OV+/-	$\mathrm{O}^{\text {Pt }}$	ONi	OR
Channel 1		Channels 1/2	Channel 2	
$\bigcirc 0 . . .10 \mathrm{~V}$	O2...10V	$\mathrm{O}+/-10 \mathrm{~V}$	$\bigcirc 00 . .10 \mathrm{~V}$	O2...10V
O 0...5V	O1...5V	O +/-5V	O0...5V	O1..5V
O 0...1V	O0.2...1V	$\mathrm{O}^{+/-1 \mathrm{~V}}$	00...1V	00.2...1V
O 0...0.5V	00.1...0.5V	O +/-0.5V	O0...0.5V	00.1...0.5V
$\square$ limit < > 0			$\square$ limit < > 0	
	R(0) Tem	p. Range	Resist	ange
O 100	$s \quad$ O-60	...160C	O 0... 1	hms
O 200	s $\mathrm{O}^{-16}$	...+160C	O $0 . . .2$	hms
O 50	$s \quad 0^{-20}$	...+320C	O $0 . . .5$	hms
		...+640C	O 0	
		O 2 -wire		
		Cancel	He	

Channel 1 ... 8: Bipolar measurements are configured in pairs. Either channel of the pair may be made inactive. Also, the 2-wire adjust is used for 2 or 3 wire 10 ohm compensation.

The measuring ranges for channels 1 to 8 can be chosen in these sections.
Conversion Values of Unipolar Voltage Inputs

0...0.5 V	$0 . .1 \mathrm{~V}$	$0 . .5 \mathrm{~V}$	0... 10 V	0.1..0.5 V	0.2... 1 V	1... 5 V	2... 10 V
$<-0.008$	<-0.016	<-0.08	<-0.16	< +0.052	<+0.104	< +0.52	<+1.04
				+0.052	+0.104	+0.52	+1.04
-0.008 ...	-0.016 ...	-0.08 ..	-0.16 ..	+0.094 ...	+0.187 ...	+0.936 ...	+1.87 ...
-0.000	-0.000	-0.00	-0.00	+0.099	+0.199	+0.99	+1.99
0	0	0	0	0.1	0.2	1	2
0.00002	0.00003	0.00016	0.00031	0.1000	0.2000	1.0001	2.0003
0.00025	0.0005	0.0025	0.005	0.1002	0.2004	1.002	2.004
0.0005	0.001	0.005	0.01	0.1004	0.2008	1.004	2.008
0.005	0.01	0.05	0.10	0.104	0.208	1.04	2.08
0.025	0.05	0.25	0.50	0.12	0.24	1.20	2.40
0.05	0.10	0.50	1.00	0.14	0.28	1.40	2.80
0.25	0.50	2.50	5.00	0.30	0.60	3.00	6.00
0.50	1.00	5.00	10.00	0.50	1.00	5.00	10.00
$0.5000 \ldots$	1.0000 ...	5.000 ...	10.000 ...	$0.500 \ldots$	1.000 ...	5.00 ...	$10.00 \ldots$
0.5119	1.0239	5.119	10.239	0.509	1.019	5.09	10.19
$>=0.512$	>=1.024	>=5.12	>=10.24	>0.509	>1.019	>5.09	>10.19

NOTE: Numbers not in parentheses $=$ range with + limit.

Conversion Values of Unipolar Voltage Inputs (continued)

15-BIT	NOTES
$-32,767$	underflow error
$0(-3,840)$	overload range
$0(-512)$	
$0(-1)$	
0	rated value
+1	
+16	
+32	
+320	
+1600	Linear Range
+3200	
+16000	
+32000	rated value
$+32001 \ldots$	
+32766	overload range
+32767	overflow error

Note: Numbers in parentheses = range with + and - limit.

Conversion Values of Bipolar Voltage Inputs

$+/-0.5 \mathrm{~V}$	$+/-1 \mathrm{~V}$	$+/-5 \mathrm{~V}$	$+/-10 \mathrm{~V}$
$<=-0.512$	$<=-1.024$	$<=-5.12$	$<=-10.24$
$-0.5119 \ldots$	$-1.023 \ldots$	$-5.119 \ldots$	$-10.239 \ldots$
-0.5000	-1.000	-5.000	-10.000
-0.50	-1.00	-5.00	-10.00
-0.25	-0.50	-2.50	-5.00
-0.05	-0.10	-0.50	-1.00
-0.025	-0.05	-0.25	-0.50
-0.005	-0.01	-0.05	-0.10
-0.0005	-0.001	-0.005	-0.01
-0.00025	-0.0005	-0.0025	-0.005
0	0	0	0
+0.00002	+0.00003	+0.00016	+0.00031
+0.00025	+0.0005	+0.0025	+0.005
+0.0005	+0.001	+0.005	+0.01
+0.005	+0.01	+0.05	+0.10
+0.025	+0.05	+0.25	+0.50
+0.05	+0.10	+0.50	+1.00
+0.25	+0.50	+2.50	+5.00
+0.50	+1.00	+5.00	+10.00
$+0.5000 \ldots$	+1.0000 .0239	$+10.000 \ldots$	
+0.5119	+1.02 .119	+10.239	
$>=+0.512$	$>=+1.024$	$>=+5.12$	$>=+10.24$

Conversion Values of Bipolar Voltage Inputs (continued)

15-BIT	NOTES
$-32,767$	underflow error
-32766	overload range
-32001	
-32000	rated value
-16000	
-3200	
-1600	
-320	linear range
-32	
-16	
+1	
+16	
+32	rated value
+320	
+1600	overload range
+3200	
+16000	
+32000	overflow error
$+32001 \ldots$	
+32766	
+32767	

Conversion Values of Current Inputs

0... 10 mA	0... 20 mA	2... 10 mA	4... 20 mA	+20 mA
<-0.16	<-0.32	<+1.04	< +2.08	<= -20.479
				-20.478 ...
				-20.000
		+1.04 ...	+2.08 ...	
-0.16...	-0.32...	+1.87 ...	+3.74 ...	
-0.00	-0.00	+1.99	+3.99	
				$\begin{aligned} & -20.00 \\ & -10.00 \\ & -2.00 \\ & -1.00 \\ & -0.20 \\ & -0.02 \\ & -0.01 \end{aligned}$
0	0	+2	+4	0
+0.005	+0.01	+2.004	+4.008	+0.01
+0.01	+0.02	+2.008	+4.016	+0.02
+0.1	+0.20	+2.08	+4.16	+0.20
+0.5	+1.00	+2.40	+4.80	+1.00
+1	+2.00	+2.80	+5.60	+2.00
+5	+10.00	+6.00	+12.00	+10.00
+10.0	+20.00	+10.00	+20.00	+20.00
+10.000...	+20.000...	+10.00...	+20.00...	+20.000...
+10.239	+20.478	+10.19	+20.38	+20.478
>= +10.24	$>=+20.479$	>+10.19	> +20.38	>= +20.479

Conversion Values of Current Inputs (continued)

15-BIT	NOTES
$-32,767$	underflow error
-32766	overload range
-32001	
$0(-3840)$	
$0(-512)$	
$0(-1)$	rated value
-32000	
-16000	
-3200	
-1600	
-320	linear range
-32	
-16	
0	rated value
+1	
+16	overload range
+32	
+320	
+1600	
+3200	
+16000	
+32000	
+32001	
+32766	
+32767	

Note: NOTE: Numbers in parentheses + range with +/- limit

Conversion Values of Temperature Inputs

-60 ... +1600C	-160 ... +160oC	-200 ... +320oC	-200 ... +6400C
<-60	<-160	<-200	<-200
	-160		
	-100	-200	
-60	-60	-120	
-50	-50	-100	-200
-16	-16	-32	-64
0	0	0	0
+0.005	+0.005	+0.01	+0.02
+0.08	+0.08	+0.16	+0.32
+0.16	+0.16	+0.32	+0.64
+8	+8	+16	+32
+16	+16	+32	+64
+80	+80	+160	+320
+160	+160	+320	+640
+160.005 ...	+160.005 ...	+320.01 ..	+640.02 ...
+163.83	+163.83	+327.66	+655.32
>= +163.84	>= +163.84	>= +327.67	>= +655.34

Conversion Values of Temperature Inputs (continued)

15-BIT	NOTES
$-32,767$	measuring range   underflow (error)
-32000	rated value
-22000	
-12000	
-10000	linear range
-3200	
0	
+16	
+32	rated value
+320	
+3200	
+16000	overload range
+32000	measuring range
$+32001 \ldots$	
+32766	overflow error
+32767	

Conversion Values for Resistance Inputs

$\mathbf{0} . .100 \Omega$	$\mathbf{0} \ldots \mathbf{2 0 0} \Omega$	$\mathbf{0} . . \mathbf{5 0 0} \Omega$	$\mathbf{0} \ldots \mathbf{1 0 0 0} \Omega$	$\mathbf{0} . .2000 \Omega$
$<-1.6$	$<-3.2$	$<-8$	$<-16$	$<-32$
$0 \ldots-1.6$	$0 \ldots-3.2$	$0 \ldots-8$	$0 \ldots-16$	$0 \ldots-32$
0	0	0	0	0
0.003	0.006	0.015	0.03	0.06
0.05	0.1	0.25	0.5	1
0.1	0.2	0.5	1	2
1	2	5	10	20
5	10	25	50	100
10	20	50	100	200
50	100	250	500	1000
100	200	500	1000	2000
$100.00 \ldots$	$200.00 \ldots$	$500.01 \ldots$	$1000.03 \ldots$	$2000.06 \ldots$
102.39	204.78	511.97	1023.94	2047.88
$>=102.40$	$>=204.79$	$>=511.98$	$>=1023.97$	$>=2047.94$

Conversion Values of Resistance Inputs (continued)

15-BIT	NOTES
-32767	underflow error
0	overload range
0	rated value
+1	
+16	
+32	linear range
+320	
+1600	rated value
+16000	
+32000	overload range
$+32001 \ldots$	
+32766	overflow error
+32767	

Meanings for the AS-BADU-214 Module Mapping

The AS-BADU-214 module requires eight 3x-input registers addressed in sequence, beginning with channel 1 as shown in the figure below.

$\ldots$ ...


Note: Refer to Concept I/O Map Status Words, p. 816 for Concept I/O Map Status Words.

Note: This modules does not require any params... screens.

Meanings for the AS-BADU-216 Module Mapping

The AS-BADU-216 module requires five 3x-input registers, addressed in sequence beginning with the first register. Refer to ADU 216 Analog Input Module, p. 169 for details on the $3 x$ status word for this module (as shown below.
$3 x$-register 1 (status word) $3 x$-register 2 (input 1)


Note: Refer to Concept I/O Map Status Words, p. 816 for Concept I/O Map Status Words.

The AS-BADU-216 module requires one $4 x$-output register, addressed in sequence beginning with the first register. Refer to ADU 216 Analog Input Module, p. 169 for details on the 4 x control word for this module as shown below.


Note: The ADU 257 may operate in two different modes: either as a ADU 257 or as an ADU 216. This description ONLY applies the ADU 257 mode. For the ADU 216 description, refer to ADU 216 Analog Input Module, p. 169 or I/O Configuration of A120 Series I/O Modules with Modsoft, p. 821.

The following dialog is valid for the analog module AS-BADU-257.



Channel 1 ... 8: Cold junction compensation is selectable for the module. Eight thermocouple types are supported. Two RTD types with various resistances are supported. Two linear ranges are offered. Two temperature units are available. Either IEC or US platinum RTDs are supported. RTD connections allowed are 2, 3, 4-wire.

Resolution: This list box defines the value range for all channels:

- 12-bit
- 16 -bit
- 15-bit + sign
- 32-bit

The measuring ranges for channels 1 to 8 can be chosen in these sections.
+/- 100mV Range and Data Display Format

Millivoltage	$\mathbf{1 2}$ bit	16 bit	15 bit + sign high   resolution	IEEE 754 floating   point	Range
$<+102.4 \mathrm{mV}$	+4095	+65535	+32767	+1.024 E 02	Overrange
$>+100 \mathrm{mV}$   +102.4 mV	+4095	+65535	$+32001 \ldots+32766$	$+1.0 \mathrm{E} 02 \ldots+1.024$   E02	Pos. tolerance range
+100 mV	+4095	+65535	+32000	+1.0 E 02	
0 mV	+2048	+32768	0	0	Nominal
-100 mV	0	0	-32000	-1.0 E 02	
$<-$   $100 \mathrm{mV} \ldots-$   102.4 mV	0	0	$-32001 \ldots-32766$	$<-1.0 \mathrm{E} 02 \ldots-$   102.4 E 02	Neg. tolerance range
$<-102.4 \mathrm{mV}$	0	0	-32767		

0 ... 4000W Range and Data Display Format

Resistance	12 bit	16 bit	15 bit + sign high   resolution	IEEE 754   floating point	Range
$>4095 \mathrm{~W}$	+4095	+65535	+32767	+4.096 E03	Overrange
$>4000 \ldots 4095 \mathrm{~W}$	+4095	+65535	$+32001 \ldots+32766$	$>+4.0$   E03 $\ldots+4.095$   E03	Pos. tolerance range
4000W	+4095	+65535	+32000	+4.0 E03	Nominal
0W	0	0	0	0	
	0	0	-2	-2.0 E00	Broken wire

IEC 751 Pt100,200,500,1000 -200 ... +850 C ( $-328 \ldots+1562$ F) Range and Data Display Format

RTD	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & \hline>+850 C \\ & (+1562 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & \hline+8501 \\ & (+15621) \end{aligned}$	$\begin{aligned} & 8.501 \mathrm{E} 02 \\ & (1.5621 \mathrm{E} 03) \end{aligned}$	Overrange
$\begin{aligned} & \hline+850 C \\ & (+1562 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +8500 \\ & (+15620) \end{aligned}$	$\begin{aligned} & 8.500 \mathrm{E} 02 \\ & (1.562 \mathrm{E} 03) \end{aligned}$	Nominal
0 (+32F)	+780	+12483	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & \hline-200 C \\ & (-328 F) \end{aligned}$	0	0	$\begin{aligned} & \hline-2000 \\ & (-3280) \end{aligned}$	$\begin{aligned} & \hline-2.00 \text { E02 } \\ & (-3.28 \text { E02) } \end{aligned}$	
$\begin{aligned} & <-200 C \\ & (-328 F) \end{aligned}$	0	0	$\begin{aligned} & -2001 \\ & (-3281) \end{aligned}$	$\begin{aligned} & -2.001 \text { E02 } \\ & (-3.281 \text { E02 }) \end{aligned}$	Underrange
	0	0	$\begin{aligned} & -2002 \\ & (-3282) \end{aligned}$	$\begin{aligned} & \hline-2.002 \text { E02 } \\ & (-3.282 \text { E02 }) \end{aligned}$	Broken wire

SAMA (US) Pt100,200,500,1000 -200 ... +650 C (-328 ... +1112 F) Range and Data Display Format

RTD	12 bit	16 bit	15 bit + sign   $\mathbf{0 . 1 C ~ ( 0 . 1 F ) ~}$	IEEE 754   floating   point	Range
>+600C   $(+1112 \mathrm{~F})$	+4095	+65535	+6001   $(+11121)$	$6.001 \mathrm{E02}$   $(1.113 \mathrm{E03})$	Overrange
+600 C   $(+1112 \mathrm{~F})$	+4095	+65535	+6000   $(+11120)$	$6.000 \mathrm{E02}$   $(1.112 \mathrm{E03})$	
0C (+32F)	+1024	+16384	$0(+320)$	$0(3.20 \mathrm{E01)})$	Nominal
-200 C   $(-328 \mathrm{~F})$	0	0	-2000   $(-3280)$	$-2.00 \mathrm{E02}$   $(-3.28 \mathrm{E02})$	
<-200C   $(-328 \mathrm{~F})$	0	0	-2001   $(-3281)$	-2.001 E 02   $(-3.281 \mathrm{E02})$	Underrange
	0	0	-2002   $(-3282)$	$-2.002 \mathrm{E02}$   $(-3.282 \mathrm{E02})$	Broken wire

DIN43760 Ni100,200,500,1000 -60 ... +250 C (-76 ... +482 F) Range and Data Display Format

RTD	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 F) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & \text { >+250C } \\ & (+482 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +2501 \\ & (+4821) \end{aligned}$	$\begin{aligned} & 2.501 \mathrm{E} 02 \\ & (4.821 \mathrm{E} 02) \end{aligned}$	Overrange
$\begin{aligned} & +250 \mathrm{C} \\ & (+482 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +2500 \\ & (+4820) \end{aligned}$	$\begin{aligned} & 2.500 \mathrm{E} 02 \\ & (4.820 \mathrm{E} 02) \end{aligned}$	Nominal
0C (+32F)	+793	+12684	0 (+320)	0 (3.20 E01)	
-60C (-76F)	0	0	-600 (-760)	$\begin{aligned} & -6.00 \text { E01 } \\ & (-7.6 \text { E01) } \end{aligned}$	
<-60C (-76F)	0	0	-601 (-761)	$\begin{aligned} & -6.01 \mathrm{E} 01 \\ & (-7.61 \mathrm{E} 01) \end{aligned}$	Underrange
	0	0	-602 (-762)	$\begin{aligned} & -6.02 \mathrm{E} 01 \\ & (-7.62 \mathrm{E} 01) \end{aligned}$	Broken wire

Thermocouple Type R,S $-50 \ldots+1768$ C ( $-58 \ldots+3214.4$ F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & \hline>+1768 \mathrm{C} \\ & (+3214.4 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & \hline+17681 \\ & (+32146) \end{aligned}$	$\begin{aligned} & \hline 1.7681 \mathrm{E} 03 \\ & (3.2146 \mathrm{E} 03) \end{aligned}$	Overrange
$\begin{aligned} & +1768 \mathrm{C} \\ & (+3214.4 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +17680 \\ & (+32144) \end{aligned}$	$\begin{aligned} & \hline 1.7680 \text { E03 } \\ & \text { (3.2144 E02) } \end{aligned}$	Nominal
0C (+32F)	+113	+1802	0 (+320)	0 (3.20 E01)	
-50C (-58F)	0	0	-500 (-580)	$\begin{aligned} & -5.00 \text { E01 } \\ & (-5.80 \text { E01) } \end{aligned}$	
$<-50 \mathrm{C}(-58 \mathrm{~F})$	0	0	-501 (-582)	$\begin{aligned} & \hline-5.01 \text { E01 } \\ & (-5.82 \text { E01 }) \end{aligned}$	Underrange
	0	0	-502 (-584)	$\begin{aligned} & -5.02 \text { E01 } \\ & (-5.84 \text { E01 }) \end{aligned}$	Broken wire

Thermocouple Type B +50 ... +1800 C (+122 ... +3272 F) Range and Data Display Format

TC	12 bit	16 bit	15 bit + sign   $\mathbf{0 . 1 C ~ ( 0 . 1 F ) ~}$	IEEE 754   floating   point	Range
$>+1800 \mathrm{C}$   $(+3272 \mathrm{~F})$	+4095	+65535	+18001   $(+32722)$	$1.8001 \mathrm{E03}$   $(3.2722 \mathrm{E03})$	Overrange
+1800 C   $(+3272 \mathrm{~F})$	+4095	+65535	+18000   $(+32720)$	$1.8000 \mathrm{E03}$   $(3.2720 \mathrm{E03})$	Nominal
$50 \mathrm{C}(+122 \mathrm{~F})$	0	0	$+500(+1220)$	$5.00 \mathrm{E01}$   $(1.220 \mathrm{E02)}$	
$<50 \mathrm{C}(+122 \mathrm{~F})$	0	0	$+499(+1218)$	$4.99 \mathrm{E01}$   $(1.218 \mathrm{E02})$	Underrange
	0	0	$+498(+1216)$	$4.98 \mathrm{E01}$   $(1.216 \mathrm{E02})$	Broken wire

Thermocouple Type J - $210 \ldots+1200$ C ( $-346 \ldots+2192$ F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & >+1200 C \\ & (+2192 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +12001 \\ & (+21922) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2001 \mathrm{E} 03 \\ (2.1922 \mathrm{E} 03) \end{array}$	Overrange
$\begin{aligned} & +1200 \mathrm{C} \\ & (+2192 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +12000 \\ & (+21920) \end{aligned}$	$\begin{aligned} & 1.2000 \mathrm{E} 03 \\ & (2.1920 \mathrm{E} 03) \end{aligned}$	Nominal
0C (+32F)	+610	+9761	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & -210 \mathrm{C} \\ & (-346 \mathrm{~F}) \end{aligned}$	0	0	$\begin{aligned} & \hline-2100 \\ & (-3460) \end{aligned}$	$\begin{array}{\|l} \hline-2.100 \text { E02 } \\ (-3.460 \text { E02 }) \end{array}$	
$\begin{aligned} & <-210 C \\ & (-346 F) \end{aligned}$	0	0	$\begin{aligned} & -2101 \\ & (-3462) \end{aligned}$	$\begin{aligned} & -2.101 \mathrm{E} 02 \\ & (-3.462 \mathrm{E} 02) \end{aligned}$	Underrange
	0	0	$\begin{array}{\|l} \hline-2102 \\ (-3464) \end{array}$	$\begin{array}{\|l} \hline-2.102 \text { E02 } \\ (-3.464 \text { E02 }) \end{array}$	Broken wire

Thermocouple Type T $-270 \ldots+400$ C ( $-454 \ldots+752$ F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & >+400 C \\ & (+752 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +4001 \\ & (+7522) \end{aligned}$	$\begin{aligned} & \text { 4.001 E02 } \\ & \text { (7.522 E02) } \end{aligned}$	Overrange
$\begin{aligned} & +400 \mathrm{C} \\ & (+752 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +4000 \\ & (+7520) \end{aligned}$	$\begin{aligned} & 4.000 \mathrm{E} 02 \\ & (7.520 \mathrm{E} 02) \end{aligned}$	Nominal
0C (+32F)	+1650	+26410	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & -270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{array}{\|l\|} \hline-2700 \\ (-4540) \end{array}$	$\begin{aligned} & -2.700 \text { E02 } \\ & (-4.540 \text { E02 }) \end{aligned}$	
$\begin{aligned} & <-270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{array}{\|l\|} \hline-2701 \\ (-4542) \end{array}$	$\begin{aligned} & -2.701 \text { E02 } \\ & (-4.542 \text { E02 }) \end{aligned}$	Underrange
	0	0	$\begin{aligned} & -2702 \\ & (-4544) \end{aligned}$	$\begin{aligned} & -2.702 \text { E02 } \\ & (-4.544 \text { E02) } \end{aligned}$	Broken wire

Thermocouple Type E -270 ... +1000 C (-454 ... +1832 F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & >+1000 C \\ & (+1832 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +10001 \\ & (+18322) \end{aligned}$	$\begin{aligned} & \hline 1.0001 \mathrm{E03} \\ & \text { (1.8322 E03) } \end{aligned}$	Overrange
$\begin{aligned} & +1000 \mathrm{C} \\ & (+1832 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +1000 \\ & (+18320) \end{aligned}$	$\begin{aligned} & 1.0000 \mathrm{E} 03 \\ & (1.8320 \mathrm{E} 03) \end{aligned}$	Nominal
0C (+32F)	+871	+13933	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & -270 \mathrm{C} \\ & (-454 \mathrm{~F}) \end{aligned}$	0	0	$\begin{aligned} & \hline-2700 \\ & (-4540) \end{aligned}$	$\begin{aligned} & -2.700 \mathrm{E} 02 \\ & (-4.540 \mathrm{E} 02) \end{aligned}$	
$\begin{aligned} & <-270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{aligned} & \hline-2701 \\ & (-4542) \end{aligned}$	$\begin{aligned} & -2.701 \mathrm{E} 02 \\ & (-4.542 \mathrm{E} 02) \end{aligned}$	Underrange
	0	0	$\begin{aligned} & -2702 \\ & (-4544) \end{aligned}$	$\begin{aligned} & -2.702 \text { E02 } \\ & (-4.544 \text { E02 }) \end{aligned}$	Broken wire

Thermocouple Type K -270 ... +1372 C (-454 ... +2501.6 F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & >+1372 \mathrm{C} \\ & (+2501.6 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +13721 \\ & (+25018) \end{aligned}$	$\begin{aligned} & 1.3721 \mathrm{E} 03 \\ & (2.5018 \mathrm{E} 03) \end{aligned}$	Overrange
$\begin{aligned} & \hline+1372 \mathrm{C} \\ & (+2501.6 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +13720 \\ & (+25016) \end{aligned}$	$\begin{aligned} & 1.3720 \text { E03 } \\ & (2.5016 \text { E03) } \end{aligned}$	Nominal
0C (+32F)	+673	+10776	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & \hline-270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{aligned} & \hline-2700 \\ & (-4540) \end{aligned}$	$\begin{aligned} & -2.700 \text { E02 } \\ & (-4.540 \text { E02 }) \end{aligned}$	
$\begin{aligned} & <-270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{aligned} & -2701 \\ & (-4542) \end{aligned}$	$\begin{aligned} & -2.701 \text { E02 } \\ & (-4.542 \text { E02 }) \end{aligned}$	Underrange
	0	0	$\begin{aligned} & -2702 \\ & (-4544) \end{aligned}$	$\begin{aligned} & -2.702 \text { E02 } \\ & (-4.544 \text { E02 }) \end{aligned}$	Broken wire

Thermocouple Type N-270 ... +1300 C (-454 ... +2372 F) Range and Data Display Format

TC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & \hline>+1300 C \\ & (+2372 F) \end{aligned}$	+4095	+65535	$\begin{aligned} & +13001 \\ & (+23722) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1.3001 E03 } \\ \text { (2.3722 E03) } \end{array}$	Overrange
$\begin{aligned} & \hline+1300 \mathrm{C} \\ & (+2372 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & \hline+13000 \\ & (+23720) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3000 \mathrm{E} 03 \\ (2.3720 \mathrm{E} 03) \end{array}$	Nominal
0C (+32F)	+704	+11270	0 (+320)	0 (3.20 E01)	
$\begin{aligned} & -270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{array}{\|l} -2700 \\ (-4540) \end{array}$	$\begin{aligned} & -2.700 \text { E02 } \\ & (-4.540 \text { E02 }) \end{aligned}$	
$\begin{aligned} & <-270 C \\ & (-454 F) \end{aligned}$	0	0	$\begin{aligned} & -2701 \\ & (-4542) \end{aligned}$	$\begin{aligned} & -2.701 \text { E02 } \\ & (-4.542 \text { E02 }) \end{aligned}$	Underrange
	0	0	$\begin{array}{\|l\|} \hline-2702 \\ (-4544) \end{array}$	$\begin{aligned} & -2.702 \text { E02 } \\ & (-4.544 \text { E02 }) \end{aligned}$	Broken wire

Cold Junction Sensor AD592 -25 ... +105 C (-13 ... +221 F) Range and Data Display Format

CJC	12 bit	16 bit	$\begin{aligned} & 15 \text { bit + sign } \\ & 0.1 \mathrm{C}(0.1 \mathrm{~F}) \end{aligned}$	IEEE 754   floating point	Range
$\begin{aligned} & >+125 \mathrm{C} \\ & (+257 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +1051 \\ & (+2212) \end{aligned}$	$\begin{aligned} & 1.051 \mathrm{E} 02 \\ & (2.212 \mathrm{E} 02) \end{aligned}$	Overrange
$\begin{aligned} & +125 \mathrm{C} \\ & (+257 \mathrm{~F}) \end{aligned}$	+4095	+65535	$\begin{aligned} & +1050 \\ & (+2210) \end{aligned}$	$\begin{array}{\|l} \hline 1.050 \text { E02 } \\ \text { (2.210 E02) } \end{array}$	Nominal
0C (+32F)	+683	+10923	0 (+320)	0 (3.20 E01)	
-25C (-13F)	0	0	-250 (-130)	$\begin{aligned} & \hline-2.50 \text { E01 } \\ & (-1.30 \text { E01 }) \end{aligned}$	
<-25C (-13F)	0	0	-251 (-132)	$\begin{aligned} & -2.51 \mathrm{E} 01 \\ & (-1.32 \mathrm{E} 01) \end{aligned}$	Underrange
	0	0	-252 (-134)	$\begin{aligned} & -2.52 \text { E01 } \\ & (-1.34 \text { E01) } \end{aligned}$	Broken wire

Meanings for the AS-BADU-257 Module Mapping

The AS-BADU-257 module requires twenty $3 x$-input registers addressed in sequence, beginning with two module status $3 x$ registers, 16 data channel $3 x$ registers (channels 1 ... 8), and two cold junction sensor $3 x$ registers as shown below.

$3 x$-register 2 (module status word)


The following errors apply to each channel:
Channel OK $=0000$
Channel overrange error $=0001$
Channel underrange error $=0010$
Broken wire error $=0011$
Invalid parameter error $=0100$
Cold junction error $=0101$ (applies to TC parameters ONLY)
(All others are reserved)

The following figure shows the AS-BADU-257 3x-register arrangement.

$\ldots$
$\ldots$
$\ldots$


## Analog Output Modules

## Analog Output Modules

The following information describes how to configure these modules:

- DAU 202/252/252C 2-point 24 Vdc Voltage/Current Analog Output
- DAU 204 4-point 24 Vdc Voltage/Current Analog Output
- DAU 2088 -point $+/-10 \mathrm{Vdc}$ Isolated Analog Output
- DAU 282* 2-point 24 Vdc Voltage/Current Analog Output (Special, Intrinsically Safe)
*The DAU 282 is a "special", and therefore it is not included in this document.

I/O Configuration using Concept 2.1 or Higher

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select DAU202/252/252C or DAU-208 and click on OK. A number and   description appear.
6	In the In Ref field, enter 0x or 4x and press Enter. The software completes the   Out Ref and Out End fields.
7	Click on Params... The appropriate configuration dialogs appear, depending on   the module selected. Refer to the specific modules.

## $\triangle$ CAUTION

## Power-down or kernel mode.

The output module Timeout States is valid only in a normal PLC stop state. Therefore, when the PLC powers down or goes into kernel mode, the outputs default to the module's fail safe state. The Timeout States are defined on the I/O Map module parameter screens.
Failure to follow this instruction can result in injury or equipment damage.

## AS-BDAU-202/

 252(C)The following dialog is valid for the following modules: AS-BDAU-202/ 252(C).


## Timeout State:

The Compact Timeout State only reflects a user program in stop mode.
Activation of the User Defined option button causes the outputs to take on the value defined in the user-defined timeout state text field.

## Last Value

Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.

## User Defined:

Activation of the User Defined option button causes the outputs to take on the hex values defined in the user-defined timeout state text fields Word 1/2.

## Resolution Mode

This list box defines the value range for all channels:

- 12-bit
- 15-bit + sign

Measuring ranges +/- $10 \mathrm{VDC} /+/-20 \mathrm{~mA}$

Voltage (VDC)	Current (mA)	12-bits	15-bits   + sign	Range
$-10.24 \ldots$	$-20.48 \ldots$	0	-32768	Under-range
-10.005	-20.01	47	-32016	
-10.00	-20.00	48	-32000	
0	0	2048	0	Nominal range
+10.00	+20.00	4048	+32000	
$+10.005 \ldots$	$+20.01 \ldots$	4049	+32016	Overrange
+10.24	+20.48	4095	+32752	

Meanings for the The AS-BDAU-202/ 252(C) modules require two 4x-output registers, as shown AS-BDAU-202/ 252(C) Module Mapping
below.

4x-register 1 (channel 1)


4x-register 2 (channel 2)


## AS-BDAU-204 This following dialog is valid for the analog module AS-BDAU-204.



Timeout StateThe Compact Timeout State only reflects a user program in stop mode.
Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.
User Defined: Activation of the User Defined option button causes the 4 outputs to take on the hex values defined in the user-defined timeout state text fields Channel 1/4.
Override Last Value: Activation of the Set to Bottom of Scale Channel x option button causes channel $x$ output to be set to the lowest value of the selected measuring range (Range) upon user program stop.
Example: For a selected measuring range of $4 \ldots 20 \mathrm{~mA}$ the output will carry 4 mA upon user program stop, and thus guarantee a defined switch-off behavior.

Note: Activation of the Set to Bottom of Scale option button disables any further alteration of the user-defined timeout state text field for the particular channel.

Resolution Mode: This list box defines the output value range for all channels:

- 11-bit
- 12-bit
- 15-bit + sign
- 16-bit

Built-In Tests: This list box can cause the execution of module built-in tests either automatically at power-up, or during on-line operation. The module's green LED lights as long as no functional fault is determined.
Selection of Category 2 (+/- 10 VDC) restricts the built-in tests exclusively to the +/10 VDC measuring range (Range).
Selection of Category $3(4 \ldots 20 \mathrm{~mA})$ restricts the built-in tests exclusively to the $4 \ldots$ 20 mA measuring range (Range). "None" can be selected if the execution of built-in tests is not desired.

Range:Measuring ranges for the individual channels can be chosen in these list boxes.

- 0 ... 1 VDC
- 0 ... 5 VDC
- 0 ... 10 VDC
- 0 ... 20 mA
- 4 ... 20 mA
- +/- 1 VDC
- +/- 5 VDC
- +/- 10 VDC

0 ... 1 VDC, 0 ... 5 VDC, 0 ... 10 VDC

$\mathbf{0} \ldots \mathbf{1}$   VDC	$\mathbf{0} \ldots \mathbf{5}$   VDC	$\mathbf{0} \ldots \mathbf{1 0}$   VDC	11-bits	12-bits	15-bits   + sign	16-bits	Range
$0 \ldots 1$   VDC	$0 \ldots 5$   VDC	$0 \ldots 10$   VDC	11 -bits	12-bits	15 -bits   + sign	16-bits	Range
0	0	0	0	0	0	0	
0.5	2.5	5	1024	2048	16000	32768	Nominal range
1	5	10	2047	4095	32000	65520	

0/4 ... 20 mA

$\mathbf{0} \ldots \mathbf{2 0}$   $\mathbf{m A}$	$\mathbf{4} \ldots \mathbf{2 0}$   $\mathbf{m A}$	11-bits	12-bits	15-bits   + sign	16-bits	Range
0	4	0	0	0	0	
10	12	1024	2048	16000	32768	Nominal range
20	20	2047	4095	32000	65520	

+/- 1 VDC, +/- 5 VDC, +/- 10 VDC

+/- $\mathbf{1}$ VDC	+/- 5 VDC	+/- 10   VDC	11-bits	12-bits	15-bits   + sign	16-bits	Range
-1	-5	-10	0	0	-32000	0	
0.5	2.5	0	1024	2048	0	32768	Nominal range
+1	+5	+10	2047	4095	+32000	65520	

Meanings for the AS-BDAU-204 Module Mapping

The AS-BDAU-204 module requires one $3 x$-input register and five $4 x$-output registers. The $4 x$-output registers are addressed in sequence, beginning with channel 1 . See the following figures.
The following figure shows the AS-BDAU-204 3x-register arrangement.


Bits $5 \ldots 13$ are not used
The following figure shows the AS-BDAU-204 4x-register arrangement.


LSB


## Runtime Control Word

The runtime control word supports the following calibration properties:


Bits 8 ... 14 are not used

AS-BDAU-208 The following dialog is valid for the analog module AS-BDAU-208.


## Timeout State

The Compact Timeout State only reflects a user program in stop mode.
Activation of the Last Value option button causes the outputs to retain their last valid value upon user program stop.
If the User Defined option button was activated, the 8 corresponding hex values can be entered here.

## User Defined:

If the User Defined option button was activated in the timeout state section, the corresponding hex values can be entered in the text boxes $1 / 8$, determining one value for each of the 8 output registers.

## Resolution Mode

This list box defines the output value range for all channels:

- 12-bit
- 15-bit + sign


## Measuring Range

The +/- 10 VDC measuring range representation can be gathered from the following table:

$+/-10$ VDC	12-bits	15-bits + sign	Range
$-10.24 \ldots$	0	-32768	Under-range
-10.005	47	-32016	
-10.00	48	-32000	Nominal range
0	2048	0	
+10.00	4048	+32000	
$+10.005 \ldots$	4049	+32016	
+10.24	4095	+32752	

Meanings for the
AS-BDAU-208 Module Mapping

The AS-BDAU-208 module requires eight 4x-output registers. The $4 x$-output registers are addressed in sequence, beginning with channel 1 as shown below. 4 x -register 1 (channel 1)


4x-register 8 (channel 8)
MSB
 LSB

## Intelligent Modules

## Intelligent Modules

I/O Configuration of FRQ Modules using Concept 2.1 or Higher

This section describes how to configure the following modules:

- FRQ-204/254 Frequency
- MOT 201 Motion -Encoder Only
- MOT 202 Motion-Resolver and Encoder
- VIC-2xx (Not supported in Concept 2.1 or higher)
- VRC 200/CTR 205/212/224 (Not supported in Concept 2.1 or higher)
- ZAE 201 Counter/Positioner

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select FRQ--204/205 and click on OK. A number and description appear.
6	In the In Ref field, enter 3x and press Enter. The software fills in the In Ref and   In End fields.
7	Click on Params...

I/O Configuration of Motion and Counter/
Positioner Modules using Concept 2.1 or Higher

Use the following procedure to configure the module.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select MOT--2X or ZAE--201 and click on OK. A number and description appear.
6	In the In Ref field, enter 3x and press Enter. The software fills in the In Ref and   In End fields.
7	In the Out Ref field, enter 4x and press Enter. The software fills in the Out Ref   and Out End fields.
8	Click on OK. (No Params are required for these modules.)

## AS-BFRQ 204/ 254

The following dialog is valid for the AS-BFRQ 204/ 254 modules (frequency/ revolution counters).


## Channel 1 ... 4

The individual channels are configured in the columns Channel 1 ... 4. Enter the desired counting frequency as offered ( $4 \mathrm{x}<=1 \mathrm{kHz}, 1 \mathrm{x}<=50 \mathrm{kHz}$ )

## Mode

The counting frequency can be selected in this section with the $<=1 \mathrm{kHz}$ or $<=50 \mathrm{kHz}$ option buttons.

Note: Channel 1 can be alternatively driven with counting frequencies of up to 50 kHz.

Revolution counting mode is activated through the Revolution option button. Selecting the Revolution Mode changes the actual value received from Hz to rev/min.

Activate the Falling Edge option button to trigger on the negative counting edge ( $1->0$ ). The default setting is positive edge ( $0->1$ ).

Activation of the Inverse Output option button causes negation of both channel limit signals.

FRQ204 Mode Configuration Example

Mode   Selection	Time   (Gating   Time)	Units of   Measure	Actual Input   Signal Value	Display   Value   Received
1 kHz	$1 \ldots 7$	Hz	247 Hz	247
50 kHz	$1 \ldots 7$	Hz	26780 Hz	26780
Revolution	$1 \ldots 7$	Rev/Min.	$14820 \mathrm{Rev} / \mathrm{Min}$.	14820
Revolution/   50 kHz	$1 \ldots 7$	Rev/Min.	$29654 \mathrm{Rev} / \mathrm{Min}$.	29654
1 kHz	8	Hz	14.286 Hz	14286
Revolution	8	Rev/Min.	$857.1 \mathrm{Rev} / \mathrm{Min}$.	8571

## Time

Time is the frequency of how often the counts are updated. The gating time for frequency/revolution measurements can be selected in this section.

- 62.5 msec
- 125 msec
- 250 msec
- 500 msec
- 1000 msec
- 2000 msec
- 8000 mesc
- $\mathrm{EM}<=20 \mathrm{~Hz}$

The 62.5 to 8000 msec presets open the measurement window a corresponding period for input signal summation, which can then be converted into Hz or RPM units.
The EM <= 20 Hz option button causes the measurement to be derived from the slope time rather than the gate time. This results in higher precision for frequencies up to 20 Hz or below 1200 RPM, which are achieved in a shorter gate-time period.

## Divide Factor

The divide factor actually divides your counts by the number you enter. A factor can be entered in this text field. The factor entered here is used for the connection of incremental encoders, sensors, or similar devices with high resolution, i.e. >1 count per revolution. As a value, the number of impulses per revolution has to be given. For example, if you have a 256 pulse/revolution encoder, then you would enter 256. The real frequency response speed is returned from the FRQ 204. The default value is 1 . If you enter 0 it will be seen as a 1 .

## Lower Limit

This establishes the lower limit of your range. The lower limiting threshold for minimum frequency or revolution monitoring (as well as wire breakage), can be entered in this text field. Values falling short of this preset value initiate status bits within the first input register (bits $0 \ldots 3$ ), and in the status register of the drop station. Measurements continue and remain uninfluenced. When the lower limit is exceeded the corresponding module outputs are set.

## Upper Limit

This establishes the upper limit of your range. The upper limiting threshold for maximum permissible frequency or revolution monitoring can be entered in this text field. Values falling short of this preset value initiate status bits within the first input register (bits 4 ... 7), and in the status register of the drop station. Measurements continue and remain uninfluenced. When the upper limit is exceeded the corresponding module outputs are set.

## Meanings for the AS-BFRQ 204/ 254 Module Mapping

The frequency counting modules require five $3 x$-input registers, as shown in ASBFRQ 204/ 2 Registers, p. 807 and AS-BFRQ 204/2 Registers, p. 807 below.


Bits 12 ... 15 are not used

AS-BFRQ 204/ 2 The following figures shows the AS-BRFQ 204/254 3x-status register (top) and the Registers AS-BFRQ 204/ $2543 x+1 \ldots+4$ data register (bottom).
$3 x$-register +1 (frequency/revolution data)

...
...
$3 x$-register +4 (frequency/revolution data)


Note: Refer toConcept I/O Map Status Words, p. 816 for Concept I/O Map Status Words.

## AS-BMOT-201/

202
Note: These modules do not require any params... screens.
The AS-BMOT-201/ 202 modules require six $3 x$-input registers and six $4 x$-output registers.

Meanings for the The following figure shows the AS-BMOT-201/ 202 3x-register arrangement. AS-BMOT-201/ 202 Module Mapping
$3 x$-register 1 (status word)


The following figure shows the AS-BMOT-201/ 202 3x-register arrangement.
$3 x$-register 2 (input data word 2)

$3 x$-register 3 (input data word 3 )

...
$\ldots$
$3 x$-register 6 (input data word 6)


The following figure shows the AS-BMOT 201/ 202 4x-register arrangement.


...
$\ldots$
4 x -register 6 (output data word 6)


AS-BZAE-201
Note: This module does not require any params... screens.
The AS-BZAE-201 module requires three $3 x$-input registers and three $4 x$-output registers.

Meanings for the AS-BZAE-201 Module Mapping

The following figure shows the AS-BZAE-201 3x-register arrangement.
$3 x$-register 1 (input 1)

....
...
$3 x$-register 3 (input 3)


The following figure shows the AS-BZAE-201 4x-register arrangement.
4x-register 1 (output 1)

$\ldots$
...

4x-register 3 (output 3)


## Communication Interfaces

Communication Interfaces

This section describes how to configure the following modules:

- BKF-201 (16W)/BKF-201 (64W) Interbus S Master
- BKF-202 Interbus S Slave
- DEA-202 Interbus S Interface (No Mapping required)
- DEA-203253/243C Profibus DP Slave Module (No Mapping required)
- MVB-258/258A*
*The MVB-258/258A is a "special,"and therefore it is not included in this document.

I/O Configuration Using Concept 2.1 or Higher

Instructions for configuring the BKF-201 (16W) and BKF-201(64W) follow.

Step	Action
1	Select Configure from the menu.
2	Select I/O Map from the menu.
3	Click on Edit... The Local Common CPU Drop dialog appears.
4	Click on Module. The I/O Module Selection dialog appears.
5	Select BKF and click on OK. A number and description appear.
6	In the In Ref field, enter 3x and press Enter. The software completes the In Ref   and In End fields.
7	In the Out Ref field, enter 4x and press Enter. The software completes the Out   Ref and Out End fields.
8	Click on Params... The Timeout State for Outputs on IBS dialog appears.)
9	Select either Set to Zero or Hold Last Value and click on OK.


#### Abstract

AS-BBKF-201 / 202

The following dialog is used with the communication module AS-BBKF-201 (16 words/64 words). A different dialog box is used for AS-BBKF-202 (16 words); it is very similar.




## Timeout state for outputs on IBS

The Compact timeout state only reflects a user program in stop mode.
Activation of the Set to Zero option button causes outputs to be set to 0 upon user program stop, and thus guarantee a defined switch-off behavior.
Activation of the Hold Last Value option button causes the outputs to retain their last valid value upon user program stop.

## Meanings for the AS-BBKF-201/ 202 Module Mapping

The AS-BBKF-201 module requires 16 or 64 4x-output registers; the AS-BBKF-202 module requires $164 x$-output registers addressed in sequence, beginning with the first register (refer to the following figure(s). Refer to BKF 201 (16W) \& (64W) InterBus S Master Module, p. 217 and BKF 202 InterBus S Slave Module, p. 235 for details about the 4 x control word for these modules.

The following figures show the AS-BBKF-201/202 3x-register arrangement.
$3 x$-register 1 (status word)
$3 x$-register 2 (input 1)


The AS-BBKF-201 module requires 16 or 64 3x-input registers, the AS-BBKF-202 module requires $163 x$-input registers, addressed in sequence beginning with the first register (refer to the figure below). Refer to BKF 201 (16W) \& (64W) InterBus S Master Module, p. 217 and BKF 202 InterBus S Slave Module, p. 235 for details on the $3 x$ status word for these modules.


## Concept I/O Map Status Words

## Status Words

Note: All other modules do not provide status word information.
The following lists the modules that provide Concept I/O Map Status Words. Most provide only an error flag, yet others provide additional error information.
The following table shows I/O Map Status Word Error Flags and Additional Error Information.

I/O Module	Error Flag Meaning (Refer to Figure 54)	Provides Additional Error Information
ADU204/254/254C	Not applicable	Yes. Refer to ADU 204/ 254/254(C) Status Word, p. 817.
ADU205	Not applicable	Yes. Refer to ADU 205 Status Word, p. 817.
ADU206	1=Group signal when detail status information is available	
ADU210	$1=$ Group signal when detail status information is available	Yes. Refer to $A D U 210$ Status Word, p. 818.
ADU214	1=Group signal when detail status information is available	Yes. Refer to $A D U 214$ Status Word, p. 819.
ADU216	1=Group signal when detail status information is available	
ADU257	1=Group signal when detail status information is available	Yes. Refer to ADU 257 Status Word, p. 820.
BKF201/202	1=Module error	
DAP208/210/258/258C	1=Overload on one or more outputs	
DAP220/250/250C	1=Power missing, or overload on one or more outputs	
DAU202/252/252C	$1=$ Error during generation of the internal $+/-15 \mathrm{~V}$ supply	
DAU208/258	$1=$ Error during generation of the internal $+/-15 \mathrm{~V}$ supply	
FRQ204/254	1=Overflow of a counter or overload on one or more outputs	Yes. Refer to FRQ 204/ 254 Status Word, p. 820.

Status Word Error Flag

ADU 204/254/ 254(C) Status Word

The following figure shows the Status Word Error Flag.

MSB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The following figure shows the ADU 204/254/254(C) Status Word.


ADU 205 Status The following figure shows the ADU 205 Status Word. Word


ADU 210 Status Word

The following figure shows the ADU 210 Status Word.


Parameter error $=001$
Underrange or broken wire error $=101$
Overrange error = 110

System error or power failed $=11111111$
Bits 7 \& 3 are not used

ADU 214 Status The following figure shows the ADU 214 Status Word.

## Word



Parameter error $=0001$
Channels 1,3,5,7 (for 2-wire voltage or current ONLY) error $=0010$
Channels 2,4,7,8 (for voltage or current ONLY)
(channels 1,3,5,7 MUST be inactive) error $=0011$
Broken wire (2-wire or 4-wire RTD measurement ONLY) error $=0100$
Underrange, sensor short circuit, or broken wire (of any channel) error $=0101$
Overrange (of any channel) error $=0110$
Bipolar measurement
(both channels MUST be configured as the same-measurement range) error = 0111

System error or power failed $=11111111$

ADU 257 Status Word

No error in channels $1 \ldots 8=0$ Error in channels $1 . . .8=1$

FRQ 204/254

## Status Word

The following figure shows the ADU 257 Status Word.


LSB

reserved

reserved

Channel 9 status (cold junction sensor) $\qquad$
Channel OK = 0000
Channel overrange $=0001$
Channel underrange $=0010$
Broken Wire $=0011$
(All others reserved)

The following figure shows the FRQ 204/254 Status Word.


Bit 7 is not used

## I/O Configuration of A120 Series I/O Modules with Modsoft

## At a Glance

Purpose This chapter describes the configuration of A120 Series I/O modules with Modsoft.
What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Configuring A120 Discrete Input Modules with Modsoft	822
Configuring A120 Discrete Output Modules with Modsoft	823
Configuring A120 Discrete Combination Modules with Modsoft	824
Configuring A120 Analog Input Modules with Modsoft	825
Configuring A120 Analog Output Modules with Modsoft	826
Configuring A120 Intelligent Modules with Modsoft	827
Configuring A120 Communication Interfaces with Modsoft	828

## Configuring A120 Discrete Input Modules with Modsoft

## Discrete Input Modules

This following information describes how to configure the following modules:

- DEO 216 16-point 24 Vdc Discrete Input
- DEP 208 8-point 230 Vac Discrete Input
- DEP 209 8-point 120 Vac Discrete Input
- DEP 210 8-point 115 Vac Isolated Discrete Input
- DEP 211 8-point 115 Vac Isolated Discrete Input
- DEP 214 16-point 12 ... 60Vdc Discrete Input
- DEP 215 16-point 5 Vdc TTL Discrete Input
- DEP 216 16-point 24 Vdc Discrete Input
- DEP 217 16-point 24 Vdc Discrete Input
- DEP 218 16-point 115 Vac Isolated Discrete Input
- DEP 220 16-point 24 Vdc Discrete Input
- DEP 257 16-point 110 Vdc Discrete Input
- DEP 296 16-point 60 Vdc Isolated Discrete Input
- DEP 297 16-point 48 Vdc Isolated Discrete Input
- DEP 284* 8-point 115 Vac Isolated Discrete Input (Not supported in Modsoft 2.6 or lower)
*The DEP 284 is a "special", and therefore it is not included in this document.

I/O Configuration Using Modsoft 2.6 or Lower

Use the following procedure to configure A120 discrete input modules using Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select DEPxxx.
5	Enter the input reference 10001 and press the Enter key. The software   automatically fills in the input range. If you are using a 3x register, the cursor   automatically moves to Data Type.
6	Select either Binary or BCD and press the Enter key.
7	Choose Quit (or press F9). Escape to the Modsoft main menu.
8	Refer to individual module chapters for more information.

## Configuring A120 Discrete Output Modules with Modsoft

Discrete Output Modules

The following information describes how to configure these modules:

- DAO 216 16-point 24 Vdc Discrete Output
- DAP 204 4-point 24 ... $110 \mathrm{Vdc} / 24$... 250 Vac Relay Discrete Output
- DAP 208 8-point 24 ... $110 \mathrm{Vdc} / 24$... 250 Vac Relay Discrete Output
- DAP 209 8-point 120 Vac Discrete Output
- DAP 210 8-point 24 ... 240 Vac Discrete Output
- DAP 216(N)16-point 24 Vdc Discrete Output
- DAP 217 16-point 5 ... 24 Vdc Discrete Output
- DAP 218 16-point 24 ... 240 Vac Discrete Output
- DAP 284* 4-point 24 ... 110 Vdc/24 ... 250 Vac Relay Discrete Output (Special, Intrinsically Safe) (Not supported in Modsoft 2.6 or lower)
*This is a "special", and therefore it is not included in this document.
I/O Configuration Use the following procedure to configure the A120 discrete output modules using Using Modsoft 2.6 or Lower

Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select DAPxxx.
5	Enter the input reference 10001 and press the Enter key. The software   automatically fills in the output range. If you are using a 3x register and a 4x   register, the cursor automatically moves to Data Type.
6	Select either Binary or BCD and press the Enter key.
7	Choose Quit (or press F9). Escape to the Modsoft main menu.
8	Refer to individual module chapters for more information.

## Configuring A120 Discrete Combination Modules with Modsoft

Discrete	The following information describes how to configure these modules:
Combination	- DAP 211 Monitored 4-point in/4-point out 120 Vac Combined I/O (Requires a
Modules	loadable (SW-IODR-001) for proper operation using certain PLCs (A984- 1 xx ,
	E984-24x/251/255) with Modsoft. Refer to Installing the Loadables for $A 120$
	Series I/O Modules, p. 869 for details).
	- DAP 2128 -point in $/ 4$-point out 24 Vdc Combined I/O
	- DAP 2208 -point in/8-point out 24 Vdc Combined I/O
	- DAP 2528 -point in/4-point relay out 24 Vdc LT Combined I/O
	- DAP 2538 -point in/4-point relay out 110 Vdc LT Combined I/O
	- DAP 2928 -point in/4-point relay out 60 Vdc Combined I/O

I/O Configuration Using Modsoft 2.6 or Lower

Use the following procedure to configure A120 discrete output modules using Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select DAPxxx.
5	Enter the input reference 10001 and press the Enter key. The software   automatically fills in the input range.
6	Enter the output reference 0001 and press the Enter key. The software   automatically fills in the input range. If you are using a 3x register and a 4x   register, the cursor automatically moves to Data Type.
7	Select either Binary or BCD and press the Enter key.
8	Choose Quit (or press F9). Escape to the Modsoft main menu.
9	Refer to individual module chapters for more information.

## Configuring A120 Analog Input Modules with Modsoft

## Analog Input Modules

This section describes how to configure the following modules:

- ADU 204 4-point Voltage/RTD Analog Input
- ADU 205 4-point Voltage/Current Analog Input
- ADU 206 4-point Voltage/Current Isolated Analog Input
- ADU 210 4-point Voltage/Current Analog Input (Not supported in Modsoft)
- ADU 214 8-point Voltage/Current Isolated Analog Input
- ADU 216 8-point Thermocouple Isolated Analog Input
- ADU 257/257C 8-point Voltage/RTD/TC Analog Input (Not supported in Modsoft) NOTE: If the ADU257s DIP switch is set to the ADU216 mode, the ADU257 operates just like an ADU216 module. Refer to Overview of the ADU 257 Analog Input Module, p. 187.
- ADU 282/282M* 2-point Analog Input (Special, Intrinsically Safe) (Not supported in Modsoft 2.6 or lower).
- ADU 284* 2-point Analog Input (Special, Intrinsically Safe) (Not supported in Modsoft 2.6 or lower)
- ADU 211/212 8-point Universal Isolated Analog Input
*This is a "special", and therefore it is not included in this document.

I/O Configuration Using Modsoft 2.6 or Lower

Use the following procedure to configure A120 discrete output modules using Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select ADUxxx.
5	Enter the input reference 3x and press the Enter key. The software   automatically fills in the input range.
6	Enter the output reference 4x and press the Enter key. The software   automatically fills in the input range. If you are using a 3x register and a 4x   register, the cursor automatically moves to Data Type.
7	Select either Binary or BCD and press the Enter key.
8	Choose Quit (or press F9). Escape to the Modsoft main menu.
9	Refer to individual module chapters for more information.

## Configuring A120 Analog Output Modules with Modsoft

Analog Output	This section describes how to configure the following modules:
Modules	- DAU 202 2-point 24 Vdc Voltage/Current Analog Output
	- DAU 204 4-point 24 Vdc Voltage/Current Analog Output
	- DAU 208 8-point $+/-10$ Vdc Isolated Analog Output
	SAU $282^{\star}$ 2-point 24 Vdc Voltage/Current Analog Output (Special, Intrinsically
	Safe) (Not supported in Modsoft 2.6 or lower)

*The DAU 282 is a "special", and therefore it is not included in this document.

## I/O Configuration

 Using Modsoft 2.6 or LowerUse the following procedure to configure A120 discrete output modules using Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select DAUxxx.
5	Enter the output reference 4x and press the Enter key. The software   automatically fills in the input range. If you are using a 4x register, the cursor   automatically moves to Data Type.
6	Select either Binary or BCD and press the Enter key.
7	Choose Quit (or press F9). Escape to the Modsoft main menu.
8	Refer to individual module chapters for more information.

## Configuring A120 Intelligent Modules with Modsoft

## Intelligent

 ModulesThis section describes how to configure the following modules:

- FRQ-204/254 Frequency
- (Not supported in Modsoft 2.6 or lower)
- MOT 201 Motion-Encoder Only
- MOT 202 Motion-Resolver and Encoder
- VIC-2xx High-Speed Input
- VRC 200/CTR 205/212/224 Variable Reluctance Counter/Counter
- ZAE 201 Counter/Positioner
- ZAE 204 High-Speed Counter


## I/O Configuration Using Modsoft 2.6 or Lower

Use the following procedure to configure A120 discrete output modules using Modsoft.

Step	Action
1	Select I/O Map (or press F4). This places you at rack 1, slot position 101...105.
2	Move the cursor to slot 104.
3	Hold the Shift key and press the ? key. This displays a list of possible I/O   modules.
4	Select XXXxxx.
5	Enter the input reference 3x and press the Enter key. The software   automatically fills in the input range.
6	Enter the output reference 4x and press the Enter key. The software   automatically fills in the input range. If you are using a 3x register and a 4x   register, the cursor automatically moves to Data Type.
7	Select either Binary or BCD and press the Enter key.
9	Choose Quit (or press F9). Escape to the Modsoft main menu.
9	Refer to individual module chapters for more information.

## Configuring A120 Communication Interfaces with Modsoft

Communication Interfaces	The following communication interfaces are not supported in Modsoft 2.6 or lower:   - BKF-201 (16W)/BKF-201 (64W) Interbus S Master   - BKF-202 Interbus S Slave (Not supported in Modsoft 2.6 or lower)   - DEA-202 Interbus S Interface (Not supported in Modsoft 2.6 or lower)   - DEA-203/253/243C Profibus DP Slave Module (Not supported in Modsoft 2.6 or lower)   - MVB-258/258A* (Not supported in Modsoft 2.6 or lower)   *The MVB-258/258A is a "special", and therefore it is not included in this document.
I/O Configuration   Using Modsoft   2.6 or Lower	
	Note: The modules are not supported in Modsoft 2.6 or lower.

Note: The modules are not supported in Modsoft 2.6 or lower.

> Modsoft Application Examples for Selected A120 Series I/O Modules

## At a Glance

Purpose This chapter provides examples of how to use selected Series A120 I/O modules with Modsoft's Ladder Logic.

What's in this This chapter contains the following topics:

Topic	Page
ADU 205 Application Example	830
DAU 204 Application Example	833
VRC/CTR 2xx (VIC2xx) Application Notes	837

## ADU 205 Application Example

## Overview In many applications, analog signals are scaled to engineering units that indicate units such as $\mathrm{I} / \mathrm{O}$ points, degrees $\mathrm{C}, \mathrm{gal} / \mathrm{min}, \mathrm{cm} / \mathrm{s}$, etc. An operator may view the scaled analog input data via LED displays, screen displays on a monitor, or report printouts.

## Temperature Example

For example, assume that the $-10 \ldots+10 \mathrm{~V}$ signal is being used to represent a temperature between $-40 \ldots+140 \mathrm{~F}$. The following figure shows the Signal-toTemperature Relationship.


To appropriately display this analog data as a temperature value, you can use an ADU 205 Analog Input module I/O Mapped as follows: 30001-30004 input registers and binary.

## Field Wiring

 IllustrationThe following information describes how to field wire the ADU 205. The information consists of a field wiring illustration and a procedure (see Procedure for Generating Logic, p. 832.
The following figure illustrates how to field wire the ADU 205.
ADU 205


## Procedure for Generating Logic

Use the following procedure to generate the ladder logic.

| Step | Action |
| :---: | :--- | :--- |
| 1 | Divide the temperature range, 180 degrees, by 4095. <br> $(180 / 4095=.044)$ |
| 2 | Obtain the MUL block constant by multiplying the result by 10,000. <br> $(.044 \times 10,000=440)$ |
| the constant; the high order result register will contain the range. Then subtract |  |
| the Y-intercept, -40, to obtain the answer, as shown. |  |

## DAU 204 Application Example

How the Module Ramps Outputs through to the Full Scale

The figures in this map show a ladder logic program that uses 1 timer (register 40010) and 1 upcounter (register 40020) to decrement all 4 output channel registers of the DAU204 (registers 40001 through 40004). This is very easily done using block moves and 5 holding registers (registers 40011 through 40015). With the module configured for $4 \ldots 20 \mathrm{~mA}$ output on all four channels ( 0 in register 40005), each channel is decremented from the top of the scale (4095) to the bottom of the scale (0) in 5 second intervals. After each interval, the outputs are changed to different values, again for 5 seconds. The counter is then reset, which starts the sequence again.

Note: This is only an example showing how the module operates to ramp the outputs through the full scale. The ladder logic (four networks) are not required to operate the module.

Network 1 Example

The following figure illustrates the logic for Network 1.


Network 2 Example

The following figure illustrates the logic for Network 2.

The following figure illustrates the logic for Network 3.

	40013	40013	40013	40013
	40001	40002	40003	40004
	$\begin{aligned} & \text { BLKM } \\ & 0001 \end{aligned}$	$\begin{gathered} \text { BLKM } \\ 0001 \end{gathered}$	$\begin{gathered} \text { BLKM } \\ 0001 \end{gathered}$	$\begin{aligned} & \text { BLKM } \\ & 0001 \end{aligned}$
	40014	40014	40014	40014
	40001	40002	40003	40004
	BLKM	BLKM	BLKM	BLKM
	0001	0001	0001	0001


——|


Network 3 Example
$\qquad$

## Network 4 <br> Example

Reference Data

The following figure illustrates the logic for Network 4.


The following figure shows the reference data for the DAU 204 application example.
REFERENCE DATA

30001	0000000000000000	40010	1 Dec
40001	4095 Dec	40020	5 Dec
40002	3072 Dec		
40003	1027 Dec	40011	4095 Dec
40004	0 Dec	40012	3072 Dec
40005	0 Dec	40013	2045 Dec
40006	0 Dec	40014	1027 Dec
		40015	0 Dec

## VRC/CTR 2xx (VIC2xx) Application Notes

## Controlling the Module

The VRC/CTR module is structured to minimize the amount of I/O resources required to operate the module. A total of six registers, set up as two separate groups of three registers each (three $3 \mathbf{x}$ input and three $4 \mathbf{x}$ output registers) is the total amount of resources dedicated to the module. Note that some individual registers are designed for use within the ladder program as contacts or coils.
Ladder Logic Example 1, p. 838, which follows, shows how to move data from a word format into a bit location for use as a contact or coil within the ladder program. (This is only one example. You can accomplish the same result differently.)
In this example, the command will copy the data from input register 30152 (16 bits) into sixteen consecutive bit locations starting at output reference 00065. It will also copy 32 bit locations starting at output reference 81 and move the data into two (2) consecutive holding registers starting at 4005. Refer to the figures in Accompanying Bit Functions, p. 839 to see the bit functions that will be in place with Ladder Logic Example 1, p. 838.
Some of the individual registers are designed for use within the ladder program as contacts or coils. With this ladder program, you can easily manipulate coils or simply monitor bits within the ladder program to control or monitor the VRC/CTR module.

## Ladder Logic Example 1

The following figure illustrates how to move data from a word format into a bit location for use as a contact or coil within the ladder program. This example assigns registers 30150 ... 30152 and 40050 ... 40052 to the VRC/CTR module.


In this figure, the command will copy the data from input register 30152 (16 bits) into sixteen consecutive bit locations starting at output reference 00065. It will also copy 32 bit locations starting at output reference 81 and move the data into two (2) consecutive holding registers starting at 40051.

Note: For consistency, it is recommended that the rung of logic illustrated in this figure be placed after all logic associated with the VRC/CTR module. This does not affect the module, but it may be important for consistent control of the module.

## Accompanying Bit Functions

The following figures show the bit functions that will be in place with Ladder Logic Example 1, p. 838.

If you were to program as shown in Ladder Logic Example 1, p. 838, the output references would allow you to control and monitor the VRC/CTR module, as shown in the following figure.


The following figure depicts Output Register \#2, VRC/CTR Control Word 1 (as it would appear if accompanying Ladder Logic Example 1, p. 838).


The following figure depicts Output Register \#3, VRC/CTR Control Word 2 (accompanying (as it would appear if accompanying Ladder Logic Example 1, p. 838).


## Factor Values

K Factor

The VRC/CTR module can accept K and Meter factor data to process the incoming pulse information.

The VRC/CTR module uses K factor information specific to the field device attached to each channel. K factor values may be any number from 1 ... 65,535, and are used in conjunction with the Meter factor value to calculate the incoming pulse information. Typically, the K factor number is imprinted on the side of the field device or listed in the documentation associated with the device.

## Meter Factor

## Auto Sequence

During typical use, sensing device characteristics change due to wear, material accumulation, or other items that impact performance. A meter factor value may be used to adjust the original K factor value to account for these deviations. The value used for a meter factor is multiplied into the K factor, and the result used to modify the incoming information. Meter factor values typically take the form of floating point variables from 0.0001 ... 1.9999.

To accomplish this, the VRC/CTR module assumes a decimal point in a standard integer value, as the information in the follow table shows.

PLC Data	VRtC/CTR Data
5000	0.5000
12550	1.2550

The module's meter factor defaults to a value of unity 1 (or 10000 integer). If a channel's characteristics need to be modified, the user may insert the meter factor value in the appropriate channel, and the module then calculates all incoming data based on the corrected value. The C factor $=(\mathrm{K} \times \mathrm{M}) / 10,000$.

The following table provides some examples.

Original K   Factor	Meter Factor	C Factor	\# Received   Pulses	Displayed Data
1000	1.0000	1000	9500	9
1000	0.9875	987.5	10500	10
3800	1.0155	3859	38500	9
1775	0.9725	1726	23471	13

By manipulating bits in Write register 3 (control word 2), you may view the contents of each channel's K Factor, Meter Factor, or C (calculated) factor value.

To minimize the amount of ladder programming required to operate the module, the VRC/CTR has the capability to autoscan the four input channels. If enabled, the auto sequence feature scans through channels 1 ... 4 (in order) every $\mathbf{1 / 2} \mathrm{s}$. (All channels are updated every 2 s .)
The Compact 984 or Micro ladder program simply needs to monitor four status bits assigned to input register 3 (bits 1 ... 4 in the module). These bits turn ON if the data for that channel is valid.

The following ladder logic example, Ladder Logic Example \#2, shows how to use the data valid bits to move data into a specific holding register for use within the ladder program. Moving data into specific holding registers allows for each channel to be viewed at any time.

[Please review the Controlling the Module, p. 837 and the Accompanying Bit Functions, p. 839 for more information about register operation.] By using these four valid data bits, the ladder program distinguishes which channel is displayed at any given moment in time. By moving the data that is displayed for each channel (based on the status of these bits) into specific registers for use by the program, the ladder program can better utilize the information in other sections of the ladder program.

## Manual Operation

Manual selection of channels is controlled by four bits located in output word 2, VRC/ CTR control word 1. By setting these bits ON or OFF, you may select a specific channel for monitoring.
Using the above example (see Auto Sequence, p. 842), all you would need to do is program four (4) coils in the ladder program, as shown in the following figure.


Overspeed Bits
It is recommended that the user monitor the overspeed bits in the ladder program. For the VRC-200 version of the module, the overspeed bits signal that the data from the module is potentially inaccurate. For these applications, it is recommended that the overspeed bits be monitored in ladder logic and flag an overspeed condition.

## A120 Option Modules

## At a Glance

Introduction This chapter describes several A120 modules that are options.
What's in this This chapter contains the following topics:
Chapter?

Topic	Page
SIM 203 Analog Simulator Module	846
SIM 216 Binary Simulator Module	850
NUL 200 and 202 Modules	854

## SIM 203 Analog Simulator Module

## General

The SIM 203 simulator module is an A120 option that allows you, for instructional purposes, to generate two analog signals - 0 ... 1V or 0 ... 10V (toggle switch selectable) and to display one 10 V output signal from a Compact 984 controller output module. The SIM 203 outputs interface to the controller through the ADU 204 and ADU 205 input modules.

Note: The SIM 203 Module is a simulator module used for training purposes only. It is not a functional Compact 984 I/O module.
Note that also for instructional purposes only, the DAU 202 module may be used to output an analog signal to the SIM 203 readout. For more information, see the Brief Product Description, p. 368.

## Operation

The design of the SIM 203 uses the same form factor as the standard A120 I/O modules do; however, the SIM 203 has no bus connection in back. The SIM 203 fits in any available slot in a DTA housing, and it can be mounted in any available I/O slot (in the same way that a standard A120 I/O module is mounted). The SIM 203 can also be mounted directly on a DIN rail.

The SIM 203 has an interconnection cable that can be brought out either through the top or the bottom of the module cover. The individual cable wires can be connected to the corresponding terminal assignments of the ADU 204, ADU 205, or DAU 202. The module can also be connected to the analog terminals of a Modicon Micro model 612.

## Design The following list and figure describe the structure of the SIM 203.

The SIM 203 has the following principal parts:

- One output voltmeter ( $0 \mathrm{~V} \ldots+10 \mathrm{~V}$ )
- Two input potentiometers
- One toggle switch, which has the following two positions:
- Toggle switch left position: 0 V ... +1 V (used with ADU 204's PT100 slot)
- Toggle switch right position: 0 V ... +10 V (used with ADU 205 's 10 V slot)

The following figure shows the front view of the SIM 203 Module.


## Wiring

The SIM 203 module receives power from the 24 Vdc source on the controller. All of the units in the configuration must be properly grounded.

The wiring diagram, which follows, shows the connections for the SIM 203.


Specifications The following table lists specifications of the SIM 203 option module.

Electrical Characteristics	
Power Supply Voltage and Current Required	$24 \mathrm{Vdc}, 50 \mathrm{~mA}$ maximum
Signals to Controller	2 analog signals, selectable
Output	$0 \mathrm{~V} \ldots+1 \mathrm{~V}$
Input	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$
Input Signal from Controller	1 analog signal: $0 \mathrm{~V} \ldots+10 \mathrm{~V}$
Physical Characteristics	Standard A120 module form factor
Module	2 potentiometers, 1 toggle switch, 1 voltmeter
Operating and Monitoring Devices	Stripped wires, to be clamped to screw/clamp   type terminals of A120 modules
Connections	Dimensions $40.3 \times 145 \times 117.5 \mathrm{~mm}(1.6 \times 5.6 \times 4.5 \mathrm{in})$   W x H x D

## SIM 216 Binary Simulator Module

## General <br> For instructional purposes, the SIM 216 Binary Simulator module allows you to generate up to 16 binary input signals ( 24 Vdc ) for Compact 984 controller modules. <br> The SIM 216 outputs interface to the controller through the DEO 216 and DEP 216 input modules, and the DAP 212 and DAP 220 combined I/O modules. <br> The SIM 216 module's power load is 24 Vdc , and it contains a thermally controlled resistor fuse, which adopts high resistance if loads exceed 0.65A. The fuse reassumes low resistance if load is reduced.

Note: The SIM 216 Module is a simulator module used for training purposes only. It is not a functional Compact $984 \mathrm{I} / \mathrm{O}$ module.

Operation
The design of the SIM 216 uses the same form factor as the standard A120 I/O modules do; however, the SIM 216 has no bus connection in back. The SIM 216 fits in any available slot in a DTA housing, and it can be mounted in any available I/O slot (in the same way that a standard A120 I/O module is mounted). The SIM 216 can also be mounted directly on a DIN rail.
The SIM 216 has an interconnection cable that can be brought out either through the top or the bottom of the module cover. The cable terminates into two 11-pole screw/ clamp-type terminals, to which the corresponding terminal assignments of the DEO 216, DEP 216, DAP 212, and DAP 220 are connected.

## Design

The following list and figure describe the structure of the SIM 216.
The SIM 216 has the following principal parts (which are shown in the figure):

- 16 toggle switches, including 2 latched and 1 jog switch
- Two 11-pole terminal strips, numbered 1-11 and 12-22

Note the two rows of removable cards alongside the toggle switches (refer to the figure). Use these cards to label the switches by function, voltage, input signal source, and so forth. It is suggested that you photocopy the original cards and use the photocopies to ensure a ready supply of labels.

The following figure shows the SIM 216 front view and wiring terminals.


## Wiring

The SIM 216 module can receive power from the 24 Vdc source on the controller. Make sure that all units in the configuration are properly grounded.
The wiring diagram, which follows, shows the connections for the SIM 216.


## NUL 200 and 202 Modules

## Design

Two types of empty units, the NUL 200 and the NUL 202, are available. The design of these units uses the same form factor as the standard A120 I/O modules do. They fit in any available slot in a DTA housing, and allow you to prewire modules for future use.

The following figure shows the NUL 200 and the NUL 202.


The NUL 200 Unit The NUL 200 is an empty unit that is used for the following: fixing cables not currently in use, field wiring reserve I/O slots, as a terminator, or as a rest for the snap-in front cover plate. It can be used in a partially configured DTA backplane, and it can be mounted in any available I/O slot, as does a standard A120 I/O module. The terminal screw connectors are all isolated from one another and from the I/O bus.

NUL 200 Specifications

The NUL 202 Unit
The NUL 202 is an empty unit that can be used for terminal multiplication. There are two groups of 11 terminal screws to terminate field wiring connections. The two internally combined groups may be used as connection multipliers for two potentials. The unit can be used in a partially configured DTA backplane, and it can be mounted in any available I/O slot as does a standard A120 I/O module.

The following table describes the NUL 202 specifications.

Connectors	Two groups of 11 terminal screws for field wire distribution;	
	$0.25 \ldots 2.5 \mathrm{~mm} 2$	
Maximum Voltage	$<$ or $=50 \mathrm{~V}$	
	Sum Current/Connector	10 A (maximum)

# Requirements for CE Compliance 

## At a Glance

Introduction This chapter describes how to ensure your installation of A120 Series I/O modules is in compliance with the European Directive for EMC 89/336/EEC.

Note: The E984--258/265/275/285 PLCs meet EMC requirements by design. Therefore, this chapter does not apply to these four PLC models.

What's in this This chapter contains the following topics:
Chapter?

Topic	Page
CE Compliance Requirements for Compact 984 Group 1	858
CE Compliance Requirements for Compact 984 Group 2	862

## CE Compliance Requirements for Compact 984 Group 1

Group 1<br>Requirements


#### Abstract

This section covers the installation requirements necessary to maintain compliance with the European Directive for EMC 89/336/EEC for certain (PC-A984-145, PC-E984-241, PC-E984-245, PC-E984-251, PC-E984-255, AS-BDAP-210, AS-BDAP218, AS-BVIC-200, AS-BVIC-205, AS-BVIC-212, AS-BVIC-224, AS-BVRC-200, AS-BCTR-205, AS-BCTR-212, AS-BCTR-224, AS-BADU-211, AS-BADU-212, AS-BADU-204 and AS-BMOT-201) Compact 984 components.


Note: For details regarding specific I/O modules, please refer to the A120 Series I/O Modules User Guide (890 USE 10900 formerly GM-A984-IOS).

The following requirements should be followed for installations complying with the CE marking:

- Use Braided Shielded Cable on all power supply, communications, and I/O lines. Either the Modicon Grounding Bar (Modicon part number 043509693) or a compatible device may be used. The cable should have at least $80 \%$ shield coverage. When using the Grounding Bar, the Outer Diameter of the shield should be in the range of $0.189 \ldots 0.240$ in ( $4.8 \ldots 6.0 \mathrm{~mm}$ ).
- All cable shields must be grounded using the clips on the Grounding Bar as shown below. Alternatively, the user may supply an equivalent low impedance RF ground clamp.
- CPU/PS ground terminal ( $\left.{ }^{( }\right)$must be left open as shown.
- Install braided earth ground as shown below from building earth ground to grounding clip (or clips as required) and to backplane 0 Volt reference.
- Use the plastic faceplate supplied with the backplane to cover the front of modules.
- If using a BMOT-201 module, all cables (Motor I/O Cable, Encoder Cable and I/ O Cable) exiting the BMOT-201 module must pass through a large Ferrite Bead (Steward part number 28 B2400-000).

The following figure shows a schematic view of the CE compliance requirements.


The following figure depicts the CE compliance requirements.


The following table is the Parts List for the Callout used in the two previous figures.

Callout	Vendor (or equivalent)	Part Number	Description	Instructions
1	Modicon	Shipped with backplane	Plastic Cover	Installation is Required.
2			Flat Braid Cable . 25 in( 6.3 mm ) or wider	
3	Modicon	043509693	Grounding Bar	All cable shields must be grounded.
4	Steward   (Outside the United   States call   Livingston,   Scotland at (0044)   1-506-414-200)	28 B2400-000	Ferrite Bead   1.37in(34.8mm) I.D.;   2.5in(63.5mm) O.D.;   $.44 \mathrm{in}(11.2 \mathrm{~mm})$ Thick	For a BMOT-201 ONLY: All cables (Motor I/O, Encoder and I/O cables) must pass through this large ferrite bead. Secure it with a tie wrap or equivalent.
5			Braided Shielded Cable. 80\% shield coverage, \# of conductor and gauge per user requirements.	

$\qquad$

## CE Compliance Requirements for Compact 984 Group 2

Group 2<br>Requirements

This section covers the installation requirements necessary to maintain compliance with the European Directive for EMC 89/336/EEC for certain (AS-HDTA-200, AS-HDTA-201, AS-HDTA-202, AS-BDAO-216, AS-BDAP-204, AS-BDAP-208, AS-BDAP-211, AS-BDAP-212, AS-BDAP-216, AS-BDAP-216N, AS-BDAP-217, AS-BDAP-220, AS-BDAP-250, AS-BDAP-252, AS-BDAP-292, AS-BDEO-216, AS-BDEP-208, AS-BDEP-210, AS-BDEP-211, AS-BDEP-214, AS-BDEP-215, AS-BDEP-216, AS-BDEP-217, AS-BDEP-218, AS-BDEP-220, AS-BDEP-257, AS-BDEP-254, AS-BDEP-296, AS-BDEP-297, AS-BADU-204, AS-BADU-205, AS-BADU-206, AS-BADU-210, AS-BADU-214, AS-BADU-216, AS-BADU-254, AS-BADU-256, AS-BADU-257, AS-BDAU-202, AS-BDAU-208, AS-BFRQ-204, AS-BBKF-201, AS-BZAE-201, AS-BZAE-204 and AS-BDEA-203) Compact 984 components. These particular modules operating voltages are Ub (24Vdc), working voltages Us ( $24 \mathrm{Vdc} / 230 \mathrm{Vac}$ ).

This open equipment apparatus must be mounted within an enclosure to prevent personal injury resulting from accessibility to live parts. This enclosure shall be opened by the use of a tool only.

The following requirements should be followed for installations complying with the CE marking:

- Install equipment following approved EMC practices, i.e., protective earthing and functional earthing, connections with good conductivity, and grounding cables of sufficient cross section
- Avoid all sources of electrical disturbance in proximity of the equipment, encapsulation with metallic walls
- Use manufacturer approved cabling
- Use EMC compliant grounding of cable shielding (proper mechanical connection, connection surface, clamps)
- Separate data and signal cable routing, which emit disturbances (e.g. power cables with switching transients)
- Use the prescribed suppression filters and their competent installation

Improvement of the EMC Stability on the Modules

To improve EMC stability on the modules, it is recommended that the $U$ (voltage) and M (common) connections used here have as short as possible capacitive discharge from the terminal towards the functional earth. This is the purpose of the capacitive discharge terminal (GND 001), which is shown in the following figure. In an environment that has a high interference level, an increase of the capacity on the C 1 from 2.2 nF to 22 nF is recommended.

The following figure shows the use of the capacitive discharge terminal to improve EMC stability.


C1 Capacitive discharge terminal GND 001
N Power supply modules CPU / DEA / ASP / P120
Z2 Earthing cleat EDS 000
Z3 Cable earthing bar CER 001

The following figure shows another view of the capacitive discharge terminal.


Earthing System of the Top Hat Rails and Modules

The earthing system of the 0 V on the rack is already preset when delivered. More details are described in Earthing System of the Shielded Cable Lines, p. 865 (the following section). To have noise-free operation, perform the following earthing system measures described in that section.

Earthing System of the Shielded Cable Lines

The following table provides an overview of recommended shielded cables.

Type	Features	Use
KAB-2277-LI	shielded, $3 \times 0.14 \mathrm{qmm}$	DCF 77E to KOS
KAB-2205-LI	shielded, twisted-pair, $2 \times 2$   $\times 0.5 \mathrm{qmm}$	System fieldbus to DEA 201; inputs,   outputs for ADU and DAU; counting input   for ZAE 204; pulse counter for ZAE 201
KAB-0505-LI	shielded, $5 \times 0.5 \mathrm{qmm}$	Output unit on TXT 201
KAB-0875-LI	shielded, $8 \times 0.75 \mathrm{qmm}$	Sensors and drives for POS 202
KAB-1005-LI	shielded, twisted-pair, $5 \times 2$   $\times 0.5$ qmm	Group line to ZAE 204; position sensing   for ZAE 201; sensors and drives for POS   202
KAB-1014-LI	shielded, $10 \times 0.14$ qmm	Sensor for POS 202
KAB PROFIB	shielded, inflexible,   $2 \times 0.64$ qmm	PROFIBUS to DEA 203

## Technical Assistance

## At a Glance

Purpose	This chapter describes resources that may prove useful in the installation and   troubleshooting of A120 series I/O modules.	
What's in this	This chapter contains the following topics:	Page
Chapter?	Topic	868
Schneider Automation Customer Service Numbers	869	
Installing the Loadables for A120 Series I/O Modules		

## Schneider Automation Customer Service Numbers

## Schneider Automation Telephone Numbers

Schneider Automation telephone numbers are as follows:

- To call us from anywhere in North America except from within the state of Massachusetts: 1-(800)-468-5342
- To call us from within Massachusetts or from outside North America: 1-(978)-9755001
- To call us in Seligenstadt, Germany: (49) 618281 2900, or fax us at (49) 618281 2492

When calling the Schneider Automation 800 telephone number, you will get a recording asking you to enter a one digit code for the type of service you request provided you use a touch tone telephone. The service categories and the extra digit responses for touch tone phones are:
The service categories - and extra digit code responses for push-button phones are:

1	Hardware or software technical support
2	Order entry, buying hardware or software
3	Modfax
4	Training/course registration inquiries
5	General information other than above.

Note: MODFAX: For available hardware data sheets, application notes, and software information. Recommended catalogue MC-FAX-DIR, which is the master of all available catalogues, (only twelve pages) lists all catalogues available on the MODFAX system.

Note: BBS (Schneider Automation's Customer Service Bulletin Board): For Modsoft updates, conversion utilities, hardware and software help, field service bulletins, Modbus and Modbus Plus help, software revision levels, FLASH EXEC updates for Modicon equipment, and more. Parameters are up to 56.6 k baud, no parity, 8 data, 1 stop, phone 1-(978)-975-9779.

## Installing the Loadables for A120 Series I/O Modules

Overview The following information describes how to install loadables.
General Procedure

Update the Modsoft GCNFA120.SYS File (If Less Than Ver. 2.1)

The SW-IODR-001 (Rev 1.20 or higher) loadable is available from the Customer Service Bulletin Board Service (978/975-9779). Note that all users of the A984-1XX, Micro 512, and Micro 612 PLCs may be required to perform the following steps if a particular I/O module is not included in the module table.

Step	Action
1	From the Main Menu, select F-files to download.
2	Then select 0-loadables.

The following information must appear in the GCNFA120.SYS file in the Modsoft/
Runtime directory, if the file version is less than Ver. 2.1. Edit your file accordingly.

- BMOT201,110,0,12,12,1-AXIS MOTN ,1,
- BMOT202,111,0,12,12,1-AXIS MOTN ,1,
- DEP211,17,0,1,0,8-I 110VAC ,0,
- DEP215,46,0,2,0,16-I 5VDC TTL ,0,
- DEP217,45,0,2,0,16-I 24VDC ,0,
- DEP214,20,0,2,0,16-I 10-60VDC ,0,
- DAP217,42,0,0,2,16-O 24VDC ,0,
- VIC2XX,120,0,6,6,COUNTER ,0,
- ADU211,118,0,6,6,8 CHN ANALOG ,0,
- ADU216,59,0,10,2,8 CHN A/D TC ,0,
- ADU214,36,0,6,4,4/8 CHN A/D ,1,
- ADU204,32,0,8,0,4 CHN 0.5V ,1,
- DAU204,117,0,2,12,4 CHN OUTPUT ,1,
- DAP211,10,0,1,1,4 MIXED I/O ROVAC ,0,


## Procedure for Installing the SW-IODR-001 Loadable

## Applicable File Names and Modules

## DX Loadable Configuration Files and File Names

The following table lists the file names for the modules to load in Procedure for Installing the SW-IODR-001 Loadable, p. 870.1

File Name	Module
BMOT.DAT	BMOT20X
DSC1.DAT	DEP211, 214,215, 217, and DAP217/211
SVI.DAT	ADU211,VIC2XX, and DAU204
ADU216.DAT	ADU216
ADU214.DAT	ADU214

The following table lists the configuration file names for the loadables to use in Procedure for Installing the SW-IODR-001 Loadable, p. 870.1

DX Loadable Configuration File	File Name
\#MOT	BMOT.DAT
\#DS1	DSC1.DAT
\#SVI	SVI.DAT
\#216	ADU216.DAT
\#214	ADU214.DAT
Note that the Rev, size, and opcode will vary from file to file.	

## Index



## A

ADU 204 4-point Voltage/RTD Analog Input Module
dip switches, 31
ADU 204/254 4-point Voltage/RTD Analog
Input Module, 24, 25
field wiring, 30
simplified schematic, 30
specifications, 35
ADU 205 4-point Voltage/Current Analog
Input Module, 37
application example, 830
calibration, 45
field wiring, 43
simplified schematic, 43
specifications, 47
ADU 206/256 4-point Voltage/Current
Isolated Analog Input
calibration, 68
configuration, 58
simplified schematic, 57
specifications, 71
wiring diagram, 59
ADU 210 4-point Voltage/Current Isolated
Analog Input, 76
conversions, 83
installation, 79
operation, 81
simplified schematic, 77
specifications, 85
wiring diagram, 80

ADU 211 8-point Universal Isolated Analog
Input, 88
, 131
application notes, 105
configuration, 109
dip switches, 90
field wiring, 95
quick start, 89
troubleshooting, 128
ADU 212 8-point Universal Isolated Analog Input, 88
specifications, 131
ADU 214 8-point Voltage/Current Isolated
Analog Input, 136
configuration, 149
dip switches, 161
field wiring, 158
simplified schematic, 138
specifications, 163
ADU 216 8-point Thermocouple Isolated
Analog Input, 170
calibration, 183
configuration, 176
programming modes, 178
simplified schematic, 174
wiring example, 177
ADU 257 8-point TC/RTD Isolated Analog Input
block diagram, 190
installation, 191
operation, 194

ADU 257 8-point TC/RTD Isolated Analog
Input
specifications, 202
wiring diagram, 193
analog input modules
ADU 204, 24, 25
ADU 205, 37
ADU 210, 76
ADU 211, 88
ADU 214, 136
ADU 216, 170
ADU 257, 188
analog isolated
ADU 211, 88
ADU 214, 136
ADU 216, 170
analog output modules
DAU 202, 368
DAU 202/252, 368
DAU 204 conversion ranges, 378
Installing the DAU 204, 382
installing the DAU 204, 381
application example
ADU 205 4-point Voltage/Current Analog Input Module, 830
application notes
ADU 211 8-point Universal Isolated
Analog Input, 105
CTR 205 High Speed Input Module, 837
CTR 212 High Speed Input Module, 837
CTR 224 High Speed Input Module, 837
VRC 200 High Speed Input Module, 837

## B

BKF 201 interbus s master module specifications, 234
BKF 202 interbus s slave module specifications, 247
block diagram
ADU 257 8-point TC/RTD Isolated
Analog Input, 190

## C

calibration
ADU 205 4-point Voltage/Current Analog Input Module, 45
ADU 206/256 4-point Voltage/Current Isolated Analog Input, 68
ADU 216 8-point Thermocouple Isolated
Analog Input, 183
DAU 204 4-point 24 Vdc Voltage/Current
Analog Output, 395
DAU 208 8-point +/-10 Vdc Isolated
Analog Output, 413
Capacitive discharge terminal
GND 001, 863
clear current count command
for ZAE 201 counting operations, 635
combined I/O modules
DAP 211, 290
DAP 212/252, 298
DAP 220/250, 334
DAP 253, 344
DAP 292, 356
Concept, 20
configuration
ADU 206/256 4-point Voltage/Current
Isolated Analog Input, 58
ADU 211 8-point Universal Isolated
Analog Input, 109
ADU 214 8-point Voltage/Current
Isolated Analog Input, 149
ADU 216 8-point Thermocouple Isolated Analog Input, 176
DAU 204 4-point 24 Vdc Voltage/Current
Analog Output, 390
DAU 208 8-point +/-10 Vdc Isolated
Analog Output, 411
conversions
ADU 210 4-point Voltage/Current
Isolated Analog Input, 83
counter module
ZAE 201, 631
counter/positioner modules
ZAE 201, 620

CTR 205 High Speed Input Module
application notes, 837
troubleshooting, 607
CTR 212 High Speed Input Module troubleshooting, 607
CTR 224 High Speed Input Module application notes, 837
troubleshooting, 607

## D

DAO 216 16-point 24 Vdc Output Module, 250
simplified schematic, 253
specifications, 256
wiring diagram, 254
DAP 204 4-point 24... 110 Vdc/24... 250 Vac
Relay Output, 258
simplified schematic, 260
specifications, 263
wiring diagram, 258, 260
DAP 208/258 8-point 24... $110 \mathrm{Vdc} / 24 \ldots . .250$
Vac Relay Output, 268
simplified schematic, 269
specifications, 272
wiring diagram, 269
DAP 209 8-point 120 Vac Discrete Output Module, 278
simplified schematic, 279
specifications, 280
wiring diagram, 279
DAP 210 8-point 24... 230 Vac Discrete
Output Module, 288
simplified schematic, 285
specifications, 286
wiring diagram, 285
DAP 211 4-point in/4-point out 120 Vac Combined I/O, 290
field connections, 294
specifications, 295
DAP 212/252 8-point in/4-point out 24 Vdc
Combined I/O, 298
specifications, 303

DAP 212/252 8-point in/4-point relay out 24
Vdc LT Combined I/O
field connections, 299
simplified schematic, 300
DAP 216 16-point 24 Vdc Discrete Output
Module, 308
simplified schematic, 309
specifications, 315
wiring diagram, 309
DAP 217 16-point 5... 24 Vdc Discrete Output Module
field connections, 320
simplified schematic, 319
specifications, 322
DAP 218 16-point 24... 240 Vac Discrete
Output, 326
simplified schematic, 329
specifications, 330
wiring diagram, 329
DAP 220/250 8-point in/8-point out 24 Vdc
Combined I/O, 334
simplified schematic, 337
specifications, 340
wiring diagram, 337
DAP 253 8-point in/4-point relay out 110 Vdc
LT Combined I/O, 344
field connections, 347
simplified schematic, 348
specifications, 351
DAP 292 8-point in/4-point relay out 60 Vdc
Combined I/O, 356
field connections, 359
simplified schematic, 360
specifications, 363
DAP216N 16-point 24 Vdc Discrete Output
Module, 308
simplified schematic, 309
specifications, 315
wiring diagram, 309
DAU 202/252
2-point 24 Vdc Voltage/Current Analog
Output, 368
field-wiring, 370
DAU 204 4-point 24Vdc voltage
current analog output, 377

DAU 204 4-point 24Vdc Voltage/Current
Analog Output
calibration, 395
configuration, 390
indicators, 399
specifications, 403
DAU 208 8-point +/-10 Vdc Isolated Analog
Output
calibration, 413
configuration, 411
field connections, 412
simplified schematic, 410
DEA 202, 420
DEA 202 InterBus $S$ interface module
specifications, 428
DEO 216 16-point 24 Vdc Discrete Input
Module, 432
simplified schematic, 432
specifications, 433
wiring diagram, 432
DEP 208 8-point 230 Vac Discrete Input Module
simplified schematic, 437
specifications, 439
use with Proximity Switches, 438
wiring diagram, 437
DEP 209 8-point 120 Vac Discrete Input Module, 442
simplified schematic, 443
specifications, 445
use with proximity switches, 444
wiring diagram, 443
DEP 210 8-point 115 Vac Isolated Discrete Input, 448
field connections, 451
simplified schematic, 452
specifications, 453
DEP 211 8-point 115 Vac Isolated Discrete Input, 456
field connections, 459
simplified schematic, 460
specifications, 461

DEP 214/254 16-point 12... 60 Vdc Discrete Input Module, 464
field connections, 466
simplified schematic, 467
specifications, 468
DEP 215 16-point 5Vdc TTL Discrete Input
Module, 472
field connections, 473
simplified schematic, 474
specifications, 477
DEP 216 16-point 24 Vdc Discrete Input Module
wiring diagram, 481
DEP 216/256 16-point 24 Vdc Discrete Input
Module, 480
simplified schematic, 481
specifications, 482
DEP 217 16-point 24 Vdc Discrete Input
Module, 484
simplified schematic, 485
specifications, 486
wiring diagram, 485
DEP 218 16-point 115 Vac Isolated Discrete Input, 488
field connections, 491
simplified schematic, 492
specifications, 493
DEP 220 16-point 24 Vdc Discrete Input
Module, 497
simplified schematic, 498
specifications, 499
wiring diagram, 498
DEP 257 16-point 110 Vdc Discrete Input
Module, 503
simplified schematic, 506
specifications, 507
DEP 296 16-point 60 Vdc Isolated Input
Module, 511
field connections, 514
simplified schematic, 515
specifications, 516
DEP 297 16-point 48 Vdc Isolated Discrete Input Module, 519
field connections, 521
simplified schematic, 523
specifications, 524
dip switches
ADU 204 4-point Voltage/RTD Analog Input Module, 31
ADU 211 8-point Universal Isolated
Analog Input, 90
ADU 214 8-point Voltage/Current
Isolated Analog Input, 161
discrete input modules
DAP 212/252, 298
DAP 220/250, 334
DEO 216, 432
DEP 209, 442
DEP 214, 464
DEP 216/256, 480
DEP 217, 484
DEP 220, 497
DEP 257, 503
discrete isolated
DEP 210, 448
DEP 211, 456
DEP 218, 488
DEP 296, 511
discrete output modules
DAO 216, 250
DAP 209, 278
DAP 210, 288
DAP 216, 308
DAP 218, 326

## E

E984-258/265/275/285 PLCs
Panel software requirements, 19
EMC measures, 863
end-of-travel limits
MOT 201 Motion Encoder, 581
MOT 202 Motion Resolver/Encoder, 581

## F

field connections
DAP 211 4-point in/4-point out 120 Vac
Combined I/O, 294
DAP 212/252 8-point in/4-point relay out 24 Vdc LT Combined I/O, 299

DAP 217 16-point 5... 24 Vdc Discrete
Output Module, 320
DAP 253 8-point in/4-point relay out 110
Vdc LT Combined I/O, 347
DAP 292 8-point in/4-point relay out
60Vdc Combined I/O, 359
DAU 208 8-point +/-10 Vdc Isolated
Analog Output, 412
DEP 210 8-point 115 Vac Isolated
Discrete Input, 451
DEP 211 8-point 115 Vac Isolated
Discrete Input, 459
DEP 214/254 16-point 12... 60 Vdc
Discrete Input Module, 466
DEP 215 16-point 5 Vdc TTL Discrete Input Module, 473
DEP 218 16-point 115 Vac Isolated
Discrete Input, 491
DEP 296 16-point 60 Vdc Isolated Input
Module, 514
DEP 297 16-point 48 Vdc Isolated
Discrete Input Module, 521
ZAE 204 High Speed Counter, 672
field wiring
ADU 204/254 4-point Voltage/RTD
Analog Input Module, 30
ADU 205 4-point Voltage/Current Analog Input Module, 43
ADU 211 8-point Universal Isolated Analog Input, 95
ADU 214 8-point Voltage/Current Isolated Analog Input, 158
flash EEPROM
MOT 201 Motion Encoder, 582
MOT 202 Motion Resolver/Encoder, 582
FRQ 204/254 frequency module
Configuration, 529
general, 526
operation and LEDs, 533
Specifications, 534

## G

GND 001
Capacitive discharge terminal, 863
go to target command
for ZAE 201 positioning operations, 651

## H

home limit
MOT 201 Motion Encoder, 582
MOT 202 Motion Resolver/Encoder, 582

## |

I/O map
ZAE 201 Counter/Positioner Module, 624
indicators
DAU 204 4-point 24Vdc Voltage/Current
Analog Output, 399
input modules
analog, ADU 204, 24, 25
analog, ADU 205, 37
analog, ADU 206, 76
analog, ADU 211, 88
analog, ADU 214, 136
analog, ADU 216, 170
analog, ADU 257, 188
DEO 216, 432
discrete, 298, 344, 442, 464, 480, 484
discrete,DEP 220, 497
discrete,DEP 257, 503
installation
ADU 210 4-point Voltage/Current
Isolated Analog Input, 79
ADU 257 8-point TC/RTD Isolated
Analog Input, 191
installation of
loadables, 869
INTERBUS interface module, 420
isolated analog
ADU 210, 76
ADU 211, 88
ADU 214, 136
ADU 216, 170
isolated discrete
DEP 210, 448
DEP 211, 456
DEP 218, 488
DEP 296, 511
DEP 297, 519

## L

LEDs
ZAE 204 high speed counter module, 668
loadables
installation of, 869
loadables required
ADU 211, 88
ADU 216, 188
DAP 217, 24, 290, 317
DEP 211, 456
DEP 214, 464
DEP 215, 472

## M

Modsoft, 19, 21
MOT 201 Motion Encoder
Analog Output, 553
Connectors, 545
Discrete I/O, 553
Encoder Feedback Interface, 550
end-of-travel limits, 581
flash EEPROM, 582
home limit, 582
motion development software, 583
Motor Drive Interface, 554
The DIP Switch, 555

MOT 202 Motion Resolver/Encoder
Analog Output, 574
Connectors, 563
DIP Switches, 576
Discrete I/O, 574
Encoder Feedback Interface, 572
end-of-travel limits, 581
flash EEPROM, 582
home limit, 582
motion development software, 583
Motor Drive Interface, 575
Resolver Feedback/Thermal Interface, 575
specifications, 584
MOT 20X Motion Modules, 541
motion development software
MOT 201 Motion Encoder, 583
MOT 202 Motion Resolver/Encoder, 583

## N

NUL 200 Module, 854
specifications, 855
NUL 202 Module, 854
NUL 202Module
specifications, 855

## 0

one-axis positioning module
ZAE 201 Module, 646
operation
ADU 210 4-point Voltage/Current
Isolated Analog Input, 81, 194
operation and LEDs
FRQ 204/254 frequency module, 533
output modules, 268
discrete, 250, 278, 288, 308, 326
relay, $258,298,344$

## P

Panel software requirements for A984-1xx/E984-24x/251/255 PLCs, 19
parameterize command
for ZAE 201 counting operations, 633
for ZAE 201 positioning operations, 648
programming modes
ADU 216 8-point Thermocouple Isolated
Analog Input, 178

## Q

quick start
ADU 211 8-point Universal Isolated
Analog Input, 89

## R

relay output modules, 268
DAP 204, 258
DAP 212/252, 298
DAP 253, 344
reset command
for ZAE 201 counting operations, 635
for ZAE 201 positioning operations, 650
run reference point + command
for ZAE 201 positioning operations, 652
run reference point command
for ZAE 201 positioning operations, 651

## S

Shielded cable, 865
Shielding, 865
SIM 203 Analog Simulator Module, 846
specifications, 849
wiring diagram, 848
SIM 216 Binary Simulator Module wiring diagram, 853
simplified schematic
ADU 204 8-point Voltage/Current
Isolated Analog Input, 138
ADU 204/254 4-point Voltage/RTD
Analog Input Module, 30
ADU 205 4-point Voltage/Current Analog Input Module, 43
ADU 206/256 4-point Voltage/Current Isolated Analog Input, 57
simplified schematic
ADU 210 4-point Voltage/Current Isolated Analog Input, 77
ADU 216 8-point Thermocouple Isolated
Analog Input, 174
DAO 216 16-point 24 Vdc Output
Module, 253
DAP 204 4-point 24... 110 Vdc/24... 250
Vac Relay Output, 260
DAP 208/258 8-point 24... $110 \mathrm{Vdc} /$
24... 250 Vac Relay Output, 269

DAP 209 8-point 120 Vac Discrete
Output Module, 279
DAP 210 8-point 24... 240 Vac Discrete
Output Module, 285
DAP 216 16-point 24 Vdc Discrete
Output Module, 309
DAP 217 16-point 5... 24 Vdc Discrete
Output Module, 319
DAP 218 16-point 24... 240 Vac Discrete
Output, 329
DAP 220/250 8-point in/8-point out 24
Vdc Combined I/O, 337
DAP 253 8-point in/4-point relay out 110
Vdc LT Combined I/O, 348
DAP 292 8-point in/4-point relay out
60Vdc Combined I/O, 360
DAP216N 16-point 24 Vdc Discrete Output Module, 309
DAU 208 8-point +/-10 Vdc Isolated
Analog Output, 410
DEO 216 16-point 24 Vdc Discrete Input Module, 432
DEP 208 8-point 230 Vac Discrete Input Module, 437
DEP 209 8-point 120 Vac Discrete Input Module, 443
DEP 210 8-point 115 Vac Isolated Discrete Input, 452
DEP 211 8-point 115 Vac Isolated
Discrete Input, 460
DEP 214/254 16-point 12... 60 Vdc
Discrete Input Module, 467
DEP 215 16-point 5 vdc TTL Discrete Input Module, 474

DEP 216/256 16-point 24 Vdc Discrete Input Module, 481
DEP 217 16-point 24 Vdc Discrete Input Module, 485
DEP 218 16-point 115 Vac Isolated
Discrete Input, 492
DEP 220 16-point 24 Vdc Discrete Input Module, 498
DEP 257 16-point 110 Vdc Discrete Input Module, 506
DEP 296 16-point 60 Vdc Isolated Input
Module, 515
simplified schematic, 300
software requirements, 19
specifications
ADU 204/254 4-point Voltage/RTD
Analog Input Module, 35
ADU 205 4-point Voltage/Current Analog Input Module, 47
ADU 206/256 4-point Voltage/Current
Isolated Analog Input, 71
ADU 210 4-point Voltage/Current Isolated Analog Input, 85
ADU 211 8-point Universal Isolated
Analog Input Module, 131
ADU 212 8-point Universal Isolated
Analog Input Module, 131
ADU 214 8-point Voltage/Current
Isolated Analog Input, 163
ADU 257 8-point TC/RTD Isolated
Analog Input, 202
BKF 202 interbus s slave module, 247
DAO 216 16-point 24 Vdc Output Module, 256
DAP 204 4-point 24... 110 Vdc/24... 250
Vac Relay Output, 263
DAP 208/258 8-point 24... 110 Vdc/
24... 250 Vac Relay Output, 272

DAP 209 8-point 120 Vac Discrete
Output Module, 280
DAP 210 8-point 24... 230 Vac Discrete
Output Module, 286
DAP 211 4-point in/4-point out 120 Vac
Combined I/O, 295
DAP 212/252 8-point in/4-point out 24
Vdc Combined I/O, 303
simplified schematic
DAP 216 16-point 24 Vdc Discrete Output Module, 315
DAP 217 16-point 5... 24 Vdc Discrete
Output Module, 322
DAP 218 16-point 24... 240 Vac Discrete
Output, 330
DAP 220/250 8-point in/8-point out 24
Vdc Combined I/O, 340
DAP 253 8-point in/4-point relay out 110
Vdc LT Combined I/O, 351
DAP 292 8-point in/4-point relay out 60Vdc Combined I/O, 363
DAP216N 16-point 24 Vdc Discrete
Output Module, 315
DAU 204 4-point 24Vdc Voltage/Current
Analog Output, 403
DEA 202 InterBus S interface module, 428
DEO 216 16-point 24 Vdc Discrete Input Module, 433
DEP 208 8-point 230 Vac Discrete Input Module, 439
DEP 209 8-point 120 Vac Discrete Input Module, 445
DEP 210 8-point 115 Vac Isolated
Discrete Input, 453
DEP 211 8-point 115 Vac Isolated
Discrete Input, 461
DEP 214/254 16-point 12... 60 Vdc
Discrete Input Module, 468
DEP 215 16-point 5Vdc TTL Discrete Input Module, 477
DEP 216/256 16-point 24 Vdc Discrete Input Module, 482
DEP 217 16-point 24 Vdc Discrete Input Module, 486
DEP 218 16-point 115 Vac Isolated
Discrete Input, 493
DEP 257 16-point 110 Vdc Discrete Input Module, 507
DEP 296 16-point 60 Vdc Isolated Input Module, 516
DEP 297 16-point 48 Vdc Isolated
Discrete Input Module, 524

NUL 200 Module, 855
NUL 202 Module, 855
SIM 203 Analog Simulator Module, 849

## T

troubleshooting
ADU 211 8-point Universal Isolated Analog Input, 128
CTR 205 High Speed Input Module, 607
CTR 212 High Speed Input Module, 607
CTR 224 High Speed Input Module, 607
VRC 200 High Speed Input Module, 607
TTL input modules
DEP 215, 475

## U

use with Proximity Switches
DEP 208 8-point 230 Vac Discrete Input
Module, 438
DEP 209 8-point 120 Vac Discrete Input Module, 444

## V

VRC 200 High Speed Input Module
application notes, 837
Installation, 596
LED locations and module wiring, 593
Specifications, 610
troubleshooting, 607

## W

wiring diagram
ADU 206/256 4-point Voltage/Current
Isolated Analof Input, 59
ADU 210 4-point Voltage/Current
Isolated Analog Input, 80
DAO 216 16-point 24 Vdc Output
Module, 254
DAP 204 4-point 24... 110 Vdc/24... 250
Vac Relay Output, 260
wiring diagram
DAP 208/258 8-point 24... $110 \mathrm{Vdc} /$
24... 250 Vac Relay Output, 269

DAP 209 8-point 120 Vac Discrete
Output Module, 279
DAP 210 8-point 24... 240 Vac Discrete
Output Module, 285
DAP 216 16-point 24 Vdc Discrete
Output Module, 309
DAP 218 16-point 24... 240 Vac Discrete
Output, 329
DAP 220/250 8-point in/8-point out 24
Vdc Combined I/O, 337
DAP216N 16-point 24 Vdc Discrete
Output Module, 309
DEO 216 16-point 24 Vdc Discrete Input
Module, 432
DEP 208 8-point 230 Vac Discrete Input Module, 437
DEP 209 8-point 120 Vac Discrete Input Module, 443
DEP 216 16-point 24 Vdc Discrete Input Module, 481
DEP 217 16-point 24 Vdc Discrete Input Module, 485
DEP 220 16-point 24 Vdc Discrete Input Module, 498
SIM 203 Analog Simulator Module, 848
SIM 216 Binary Simulator Module, 853
wiring example
ADU 216 8-point Thermocouple Isolated Analog Input, 177

## Z

ZAE 201
counter module, 631
counter/positioner modules, 620
ZAE 201 Counter/Positioner Module
I/O map, 624
input data block, 625
output data block, 626
Specifications, 661

ZAE 201 Module
counter example, 636
Counter Mode commands, 633
field wiring the counter for 24 V inputs, 629
field wiring the counter for 5 V inputs, 628
field wiring the positioner for 5 V inputs, 641, 642
for positioning operations, 647
high speed counting, 631
input data block, 623
one-axis positioning module, 646
output data block, 623
parameterization
for positioning operations, 648
parameterization for counting operations, 632, 633
positioning example, 654
READY state for counting operations, 632
RESET for positioning operations, 647
RESET state
for counting operations, 632
RESET state for counting operations, 635
RESET state for positioning operations, 650
run reference point command for positioning operations, 647, 651
RUN state for counting operations, 632
The READY state for positioning operations, 647
ZAE 204 High Speed Counter, 665
Configuration, 669
field connections, 672
Specifications, 686
ZAE 204 high speed counter module
LEDs, 668


[^0]:    Note: For application-specific concerns refer to ADU 211/212 Universal Analog Input Module Application Notes, p. 105

[^1]:    Suggested Component Values

